
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited.

BOOTSTRAP BASED SIGNAL DENOISING

by

Hasan Ertam Kan

September 2002

 Thesis Advisor: Monique P. Fargues
 Co-Advisor: Ralph D. Hippenstiel
 Second Reader: Roberto Cristi

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Bootstrap Based Signal Denoising
6. AUTHOR Hasan Ertam Kan

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This work accomplishes signal denoising using the Bootstrap method when the additive noise is Gaussian. The noisy signal is
separated into frequency bands using the Fourier or Wavelet transform. Each frequency band is tested for Gaussianity by
evaluating the kurtosis. The Bootstrap method is used to increase the reliability of the kurtosis estimate. Noise effects are
minimized using a hard or soft thresholding scheme on the frequency bands that were estimated to be Gaussian. The recovered
signal is obtained by applying the appropriate inverse transform to the modified frequency bands. The denoising scheme is
tested using three test signals. Results show that FFT-based denoising schemes perform better than WT-based denoising
schemes on the stationary sinusoidal signals, whereas WT-based schemes outperform FFT-based schemes on chirp type
signals. Results also show that hard thresholding never outperforms soft thresholding, at best its performance is similar to soft
thresholding.

15. NUMBER OF
PAGES

109

14. SUBJECT TERMS
Denoising, Bootstrap, Kurtosis.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

BOOTSTRAP BASED SIGNAL DENOISING

Hasan E. Kan
First Lieutenant, Turkish Army

B.S., Turkish Army Academy, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2002

Author: Hasan E. Kan

Approved by: Monique P. Fargues

Thesis Advisor

Ralph D. Hippenstiel
Co-Advisor

Roberto Cristi
Second Reader

John P. Powers
Chairman, Electrical and Computer
Engineering Department

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This work accomplishes signal denoising using the Bootstrap method when the

additive noise is Gaussian. The noisy signal is separated into frequency bands using the

Fourier or Wavelet transform. Each frequency band is tested for Gaussianity by

evaluating the kurtosis. The Bootstrap method is used to increase the reliability of the

kurtosis estimate. Noise effects are minimized using a hard or soft thresholding scheme

on the frequency bands that were estimated to be Gaussian. The recovered signal is

obtained by applying the appropriate inverse transform to the modified frequency bands.

The denoising scheme is tested using three test signals. Results show that FFT-based

denoising schemes perform better than WT-based denoising schemes on the stationary

sinusoidal signals, whereas WT-based schemes outperform FFT-based schemes on

chirp type signals. Results also show that hard thresholding never outperforms soft

thresholding; at best its performance is similar to soft thresholding.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ...1

II. BACKGROUND..3
A. PROCESSING TECHNIQUES..3

1. Fourier Analysis ...3
a Fourier Series ...3
b. Fourier Transform..4
c. Short-Time Fourier Transform..5

2. Wavelet Analysis ..6
a. The Continuous Time Wavelet Transform7
b. The Discrete Time Wavelet Transform....................................7
c. Mallat’s Algorithm..8

B. HIGHER ORDER STATISTICS ...8
1. Moments and Cumulants ..8
2. Variance, Skewness and Kurtosis Measures.....................................9

C. THE BOOTSTRAP ...10
1. Basic Principle..10
2. Parameter Confidence Interval ..11
3. Hypothesis Testing ...11

a. Description ..11
b. Estimation of the Standard Deviation for µp13

III. DENOISING USING THE KURTOSIS AND THE BOOTSTRAP.....................15
A. INTRODUCTION ...15
B. FAST FOURIER TRANSFORM BASED DENOISING...........................15

1. Short-Time Fourier Transform Step...16
2. Gaussianity Test Step..16
3. Thresholding Step..16

a. Hard Thresholding ...17
b. Soft Thresholding ...17

4. Inverse Fourier Transform...18
C. WAVELET TRANSFORM BASED DENOISING....................................19

1. The Wavelet Transform..19
2. Gaussianity Test...19
3. Thresholding ..20
4. Inverse Wavelet Transform..20

IV. SIGNAL DESCRIPTION AND SIMULATION RESULTS21
A. SIGNAL DESCRIPTION ...21

1. Sinusoidal Signal..21
2. Constant Amplitude Chirp ...21
3. Chirp With an RC Time Constant -Like Amplitude Increase.......22

 viii

B. SIMULATION RESULTS ..22
1. Fast Fourier Transform-Based Denoising24

a. Sinusoidal Signal ..24
b. Constant Amplitude Chirp..25
c. Chirp With an RC Time Constant-Like Amplitude

Increase ...26
2. Wavelet Transform-Based Denoising ..27

a. Sinusoidal Signal ..28
b. Constant Amplitude Chirp..29
c. Chirp With an RC Time Constant-Like Amplitude

Increase ...30

V. CONCLUSIONS AND FUTURE WORK...33
A. CONCLUSIONS..33
B. FUTURE WORK...34

APPENDIX A. MATLAB CODES ...35
A. FFT-BASED DENOISING ...35
B. WT-BASED DENOISING ..37
C. SUB FUNCTIONS...49

1. MakeSignal ...49
2. Kurtosistest...55

APPENDIX B. SIMULATION RESULTS ..57
A. FFT-BASED DENOISING ...57

1. Sinusoidal Signal..57
2. Constant Amplitude Chirp Signal..62
3. Chirp with an Amplitude that Increases in an RC Time

Constant Fashion..66
B. WT-BASED DENOISING ..70

1. Sinusoidal Signal..70
2. Constant Amplitude Chirp ...75
3. Chirp with an Amplitude that Increases in an RC Time

Constant Fashion...79

APPENDIX C. COMPARISON WITH WAVELET SHRINKAGE
ALGORITHM..83
A. WAVELET SHRINKAGE ALGORITHM...83

1. Choosing a Threshold Value ...83
a. Stein’s Unbiased Risk Estimator (SURE) Threshold............83
b. Sqtwolog Threshold..83
c. Heursure Threshold..83
d. Minimax Threshold ..84

2. Thresholding Methods ...84
a. Hard Thresholding ...84
b. Soft Thresholding ...84

B. COMPARISONS ...84
1. Sinusoidal Signal..85

 ix

2. Constant Amplitude Chirp ...86
3. Chirp With an RC Time Constant -Like Amplitude Increase.......87

LIST OF REFERENCES ..89

INITIAL DISTRIBUTION LIST...91

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. (a) Time-Frequency resolution for the STFT, (b) Time-Frequency
resolution for the WT. ..6

Figure 2. Mallat’s algorithm. ..8
Figure 3. FFT-based denoising scheme. ...15
Figure 4. WT-based denoising scheme. ..19
Figure 5. Sinusoidal test signal; frequency 0 10/512f = , sampling frequency 1sf = ...21
Figure 6. (a) Second test signal, (b) Third test signal. ..22
Figure 7. Distance measure d and MSE performance criteria for the sinusoidal

signal; FFT-based denoising. ...25
Figure 8. Distance measure d and MSE performance criteria for constant amplitude

chirp signal; FFT-based denoising. ..26
Figure 9. Distance measure d and MSE performance criteria for increasing

amplitude chirp signal; FFT-based denoising. ...27
Figure 10. Distance measure and MSE for test signal 1, using a Wavelet-based 4-

level decomposition and method 2, with Daubechies wavelet orders 3, 4
and 5...29

Figure 11. Performance for constant amplitude chirp signal, using a Wavelet based 4-
level decomposition and method 1, with Daubechies wavelet orders 3, 4
and 5...30

Figure 12. Performance for increasing amplitude chirp signal, using a Wavelet-based
4-level decomposition and method 1, with Daubechies wavelet orders 3, 4
and 5...31

Figure 13. FFT-based denoising for sinusoidal signal type. ...58
Figure 14. FFT-based denoising for sinusoidal signal type, SNR=–6 dB.59
Figure 15. FFT-based denoising for sinusoidal signal type, SNR=0 dB.60
Figure 16. FFT-based denoising for sinusoidal signal type, SNR=6 dB.61
Figure 17. FFT-based denoising for constant amplitude chirp type signal.62
Figure 18. FFT-based denoising for constant amplitude chirp type, SNR=–6 dB.63
Figure 19. FFT-based denoising for constant amplitude chirp type, SNR=0 dB.64
Figure 20. FFT-based denoising for constant amplitude chirp type, SNR=6 dB.65
Figure 21. FFT-based denoising for increasing amplitude chirp type signal....................66
Figure 22. FFT-based denoising for increasing amplitude chirp type, SNR=–6 dB.67
Figure 23. FFT-based denoising for increasing amplitude chirp type, SNR=0 dB.68
Figure 24. FFT-based denoising for increasing amplitude chirp type, SNR=6 dB.69
Figure 25. WT-based denoising for sinusoidal signal type, 4 level, method 2, with

Daubechies wavelet orders 3, 4 and 5. ..71
Figure 26. WT-based denoising for sinusoidal signal type, 4 level, method 2,

Daubechies wavelet 4, SNR=–6 dB. ..72
Figure 27. WT-based denoising for sinusoidal signal type, 4 level, method 2,

Daubechies wavelet 4, SNR=0 dB. ..73

 xii

Figure 28. WT-based denoising for sinusoidal signal type, 4 level, method 2,
Daubechies wavelet 4, SNR=6 dB. ..74

Figure 29. WT-based denoising for constant amplitude chirp type, 4 level, method 1,
with Daubechies wavelet orders 3, 4 and 5. ..75

Figure 30. WT-based denoising for constant amplitude chirp type, 4 level, method 1,
Daubechies wavelet 4, SNR=–6 dB. ..76

Figure 31. WT-based denoising for constant amplitude chirp type, 4 level, method 1,
Daubechies wavelet 4, SNR=0 dB. ..77

Figure 32. WT-based denoising for constant amplitude chirp type, 4 level, method 1,
Daubechies wavelet 4, SNR=6 dB. ..78

Figure 33. WT-based denoising for increasing amplitude chirp type, 4 level, method
1, with Daubechies wavelet orders 3, 4 and 5. ..79

Figure 34. WT-based denoising for increasing amplitude chirp type, 4 level, method
1, Daubechies wavelet 5, SNR=–6 dB. ..80

Figure 35. WT-based denoising for increasing amplitude chirp type, 4 level, method
1, Daubechies wavelet 5, SNR=0 dB. ..81

Figure 36. WT-based denoising for increasing amplitude chirp type, 4 level, method
1, Daubechies wavelet 5, SNR=6 dB. ..82

Figure 37. Wavelet shrinkage algorithm and proposed WT-based denoising scheme
performances for the sinusoidal signal type, using 3-level decomposition
and Daubechies wavelet 5. ..85

Figure 38. Wavelet shrinkage algorithm and proposed WT-based denoising scheme
performances for the constant amplitude chirp type, using 4-level
decomposition and Daubechies wavelet 4. ..86

Figure 39. Wavelet shrinkage algorithm and proposed WT-based denoising scheme
performances for the increasing amplitude chirp type, using 4-level
decomposition and Daubechies wavele t 5. ..87

 xiii

ACKNOWLEDGMENTS

I wish to express my sincerest appreciation to my advisors Professor Monique

Fargues and Professor Ralph Hippenstiel for their support and supervision.

I would like to thank Professor Roberto Cristi for his contributions.

Most importantly, I would like to thank my wife for her love, care and support. I

would not have been able to do this without her.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

The main goal of this thesis was to develop a denoising scheme to recover signals

that are distorted by additive white Gaussian noise, regardless of the signal’s sperctral

content. Two approaches were investigated, a short-time Fourier transform and a wavelet

transform-based approach. Both transforms are used to decompose a signal into several

frequency bands and to minimize the noise in each band. Each frequency band content is

tested for Gaussianity, which is accomplished by investigating the signal’s kurtosis. It is

well known that the signal kurtosis is equal to three only when the signal is Gaussian with

zero mean. Therefore this parameter can help to provide a reliable determination whether

or not a data sequence is Gaussian. However, the kurtosis estimate of a short data

segment is not always reliable. The Bootstrap method is used in the kurtosis estimation to

overcome this difficulty. The Bootstrap is a statistical scheme, which improves the

reliability of a parameter estimate in situations where conventional techniques are not

valid because of short data length issues. The Bootstrap uses data sequences that have the

same length as the original signal, but are obtained by randomly resampling the data

using replacement. These resampling is done many times and each data set is treated as

repeated experiment. Then, the parameter of interest is estimated for each of these

resampled sequences, to obtain a statistic for the parameter of interest. This resulting

statistic can then be used to perform hypothesis tests on the parameter value.

If the band is estimated to be Gaussian (i.e., the noise is dominant), then

thresholding is applied to the band to minimize the noise effects. Two thresholding

techniques are considered, hard and soft threshold. Hard thresholding coefficients are 0

for Gaussian data and 1 for non-Gaussian data. Whereas soft thresholding coefficients are

obtained by considering the data’s closeness to Gaussianity. The closer to being Gaussian

the band specific data is, the smaller the soft thresholding coefficients are and vice versa.

The denoised signal is obtained by applying the appropriate inverse transformation.

Three different test signal types are selected to investigate the performances: a

sinusoid, a chirp with constant amplitude, and a chirp with an RC time constant-like

 xvi

amplitude increase. The mean square error (MSE) and a distance measure defined

between original and recovered signals are selected to compare performances. Results

show FFT-based denoising schemes perform better than WT-based denoising schemes on

the stationary sinusoid signal type, whereas WT-based schemes outperform FFT-based

schemes on chirp type signals. Finally, results show that the soft thresholding scheme

always performs at least as well as or better than the hard thresholding one.

1

I. INTRODUCTION

In many data transmission and storage systems, noise gets introduced into data,

which reduces the signal quality. As a result, various filtering techniques have been

designed to suppress noise contributions in order to improve the overall signal quality.

Fourier and Wavelet transforms decompose a noisy signal into several frequency

bands. Traditional filter design methods have requirements on the frequency, magnitude

and phase of the signal such as passband ripple, stopband attenuation, transition width,

and phase constraints. The assumption behind these design criteria is that the signal is

restricted to be in a certain frequency band and that the frequencies outside this specific

band are treated as distortion. Note that this paradigm breaks down when signal and

distortion terms overlap in frequency.

Denoising attempts to remove the noise and to recover the original signal

regardless of the signal’s frequency content. The basic idea is to look at each frequency

band of interest and to minimize its noise effect by retaining the dominant component.

The band is left untouched when the signal is dominant so as not to lose the signal

component, while thresholding is applied when the noise is dominant.

This thesis discusses a denoising scheme that implements frequency band specific

thresholding schemes using the Bootstrap method and the kurtosis. Chapter 2 presents the

processing techniques and the Bootstrap method. Chapter 3 discusses the proposed

denoising scheme. Simulation results are presented in Chapter 4. Finally, Chapter 5

presents conclusions.

2

THIS PAGE INTENTIONALLY LEFT BLANK

3

II. BACKGROUND

A. PROCESSING TECHNIQUES

Signal processing allows users to extract relevant information from a given signal.

When the raw data does not allow extracting the desired information, transformations to

another domain may be performed to do so. The most common transformation types are

the Fourier and Wavelet transforms, which are discussed in the following two sections.

1. Fourier Analysis

Fourier analysis allows the representation of a given signal as a linear

combination of complex sinusoids with different frequencies. For periodic signals this is

called the Fourier Series. This representation becomes extended to the Fourier

Transform when the signal is aperiodic. Both representations are discussed in the

following subsections.

a Fourier Series

A periodic signal ()x t with period 0T may be represented as an infinite

linear combination of complex exponentials:

 0

2

()
jk t

T
k

k

x t a e
π+∞

=−∞

= ∑ , (2.1)

where 0 01/f T= is the fundamental frequency, 0

2
jk t

Te
π

 is called the kth harmonic, and ak is

the kth weight. This representation is called the Fourier series representation [1], where

the set of coefficients ka are called the Fourier series coefficients which are obtained by

 0

0

2

0

1
() , ,...,

jk t
T

k
T

a x t e dt k
T

π
−

= = −∞ ∞∫ . (2.2)

The coefficients ak’s are a measure of the strength of the signal’s components at the kth

harmonic of the fundamental frequency.

4

b. Fourier Transform

For aperiodic signals the Fourier series representation can be extended.

Assuming that ()px t is a periodic signal with a period 0T , and ()x t represents one period

of ()px t , then as 0T increases ()px t is identical to ()x t over a longer interval. Therefore,

in the limiting case [2]

 () lim ()
p

pT
x t x t

→∞
= . (2.3)

Replacing the limits of the integral in equation (2.2) by −∞ and ∞ , and multiplying both

sides by pT , leads to the Fourier Transform of x(t) given by

 2() () j ftX f x t e dtπ
∞

−

−∞

= ∫ , (2.4)

where / pf k T= and () p kX f T a= . The Inverse Fourier Transform is used to recover the

original signal ()x t from ()X f , and is defined as

 2() () j ftx t X f e dfπ
∞

−∞

= ∫ . (2.5)

The Discrete Time Fourier Transform (DTFT) is defined for discrete-time

signals as

 () () j n

n

X x n e ωω
∞

−

=∞

= ∑ , (2.6)

and the corresponding inverse is given by

2

1
() ()

2
j nx n X e dω

π

ω ω
π

= ∫ . (2.7)

It should be noted that the DTFT is periodic with period 2π .

The Discrete Fourier Transform (DFT) for a finite time discrete-time

signal x(n) with n=0,…, 1N − is defined as

1

2 /

0

() ()
N

j kn N

n

X k x n e π
−

−

=

= ∑ . (2.8)

5

Its inverse is given by

1

2 /

0

1
() () .

N
j kn N

k

x n X k e
N

π
−

=

= ∑ (2.9)

The Fast Fourier Transform is a computationally efficient implementation of the

Discrete Fourier Transform when the signal length N is a power of two. The Discrete

Fourier Transform requires N2 multiplications whereas the Fast Fourier Transform

requires () 2/ 2 logN N multiplications.

c. Short-Time Fourier Transform

The basic Fourier Transform allows the passage from the time domain to

the frequency domain. However, one may need to preserve both the time and the

frequency information contained in non-stationary signals. Unfortunately, the basic

Fourier Transform does not provide such dual information.

Time localization can be introduced by windowing the signal before using

the Fourier Transform, where the window size is selected short enough to assume the

signal inside the window is stationary. Then, the Fourier transform may be implemented

on each windowed signal portion. The resulting transformation is called the Short-Time

Fourier Transform and expressed as

 2(,) () () j ft

t

S f x t w t e dtπτ τ −= −∫ , (2.10)

where ()w t τ− denotes the sliding window centered around τ . Note that (,)S fτ

provides a two-dimensional representation of the signal frequency information at various

times τ and is a “local” spectrum of the signal ()x t around the analysis point τ [3].

Many different window types may be selected, depending on the characteristics of the

Short-Time Fourier Transform desired. In addition, the window length determines the

resolution in time and in frequency; good time resolution requires a short window,

whereas good frequency resolution requires a long window. The joint time-frequency

resolution of the Short-Time Fourier Transform is limited by the uncertainty principle. A

short time window results in a loss of frequency resolution, and vice versa.

6

2. Wavelet Analysis

A wavelet is defined as a small wave which has its energy concentrated in time

and frequency [4]. Such a characteristic is useful for the analysis of transient, non-

stationary or time-varying phenomena. By comparison, sinusoidal functions used in

Fourier Analysis have a constant amplitude.

The Wavelet Transform (WT) provides an alternative to the Short-Time Fourier

Transform (STFT), as it uses short windows at high frequencies and long windows at low

frequencies [5], while the STFT uses windows of constant size, as illustrated in Figure 1.

Note that the Wavelet Transform still satisfies the uncertainty principle, however, the

time resolution becomes arbitrarily good at high frequencies, while the frequency

resolution becomes arbitrarily good at low frequencies. The following subsections

discuss different types of Wavelet Transform that are used for continuous or discrete time

signals.

frequency frequency

time time

? f

? t

(a) STFT (b) WT

frequency frequency

time time

? f

? t

(a) STFT (b) WT

Figure 1. (a) Time-Frequency resolution for the STFT, (b) Time-Frequency resolution for the WT.

7

a. The Continuous Time Wavelet Transform

The Continuous Time Wavelet Transform may be applied to continuous

signals and two dimensions in the transfer domain are continuous. It is similar to the

Fourier Transform in that, it is obtained by projecting the signal onto a basis function.

However, the Continuous Time Wavelet Transform projects the signal onto scaled and

shifted versions of the wavelet function while the Fourier Transform uses complex

exponentials as basis functions. The Continuous Time Wavelet Transform is defined as

1

(,) () ()
t

C s x t dt
ss
τ

τ ψ
∞

−∞

−
= ∫ , (2.11)

where ()tψ is the wavelet function, τ denotes the shift in time and s is the scale factor

that denotes compression or expansion in time. The inverse transform for finite K is

obtained by

 2

1
() (,) ()

t
x t K C s dsd

s s
τ

τ ψ τ
−

= ∫ ∫ , (2.12)

where the parameter K is given by

2()

K d
ω

ω
ω

Ψ
= ∫ , (2.13)

and ()ωΨ is the Fourier Transform of the wavelet function ()tψ . [6]

b. The Discrete Time Wavelet Transform

The Discrete Time Wavelet Transform is the discrete time version of the

Continuous Wavelet Transform. It is used for discrete time signals and the dimensions of

the transform domain are discrete as well. The Discrete Wavelet Transform is obtained as

1

(,) () ()
n

n b
C a b x n

aa
ψ

−
= ∑ , (2.14)

where a, b and n are the discrete parameter versions of s, τ and t given in Equation

(2.11), respectively. The scaling factor a has another restriction as 0
ja a= where

8

j=0,1,…,log2(signal length). The common choice for 0a is 2, as it allows for fast

algorithms.

c. Mallat’s Algorithm

The Discrete Wavelet Transform, can be implemented by using Mallat’s

algorithm when 0 2a = [4], and is illustrated in Figure 2 for a three-level decomposition.

The signal is passed through a high-pass and a low-pass filter, both of which have a

bandwidth of half the signal spectrum. Then, following the Nyquist’s rule, the outputs of

the filters are subsampled by two. The subsampled high-pass filter output is called the

Detail Sequence and the subsampled low-pass filter output is called the Approximation

Sequence. This procedure may be recursively applied to the approximation sequence

obtained at previous levels. Note that a signal of length 2 j can be decomposed only j

times, because the approximation sequence has only one sample left after j levels.

Figure 2. Mallat’s algorithm.

B. HIGHER ORDER STATISTICS

1. Moments and Cumulants

The first four moments for a real valued and stationary signal ()x n are given by

 { }1 () ,m E x n= (2.15)

 { }2 1 1() () () ,m E x n x nτ τ= + (2.16)

9

 { }3 1 2 1 2(,) () () () ,m E x n x n x nτ τ τ τ= + + (2.17)

 { }4 1 2 3 1 2 3(, ,) () () () () .m E x n x n x n x nτ τ τ τ τ τ= + + + (2.18)

The first two moments are equal to the mean and correlation functions respectively. The

first four cumulants are given by

 1 1 ,c m= (2.19)

 2
2 1 2 1 1 1() () () ,c m mτ τ τ= − (2.20)

 3
3 1 2 3 1 2 1 2 1 2 2 2 2 1 1(,) (,) [() () ()] 2() ,c m m m m m mτ τ τ τ τ τ τ τ= − + + − + (2.21)

4 1 2 3 4 1 2 3 2 1 2 3 2 2 2 2 3 1

2 3 2 2 1 1 3 2 1 3 1

3 1 2 3 1 3 3 2 3

2
1 2 1 2 2 2 3 2 3 1

4
2 3 2 2 2 1 1

(, ,) (, ,) () () () ()

() () [(,)
(,) (,) (,)]

() [() () () ()

() ()] 6() .

c m m m m m

m m m m
m m m

m m m m m

m m m

τ τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ
τ τ τ τ τ τ

τ τ τ τ τ

τ τ τ τ

= − − − −

− − − − −
+ + +

+ + + + −

+ − + − −

 (2.22)

Note that the second and third order cumulants are identical to the second and third order

moments respectively when ()x n is a zero-mean process.

Cumulants have properties that make them more desirable than moments. Some

of these properties are

a. Each cumulant is independent of all lower order cumulants.

b. All cumulants of order greater than two are equal to zero for Gaussian

processes. Hence, any Gaussian process is completely characterized by its first two

cumulants. Therefore higher-order cumulants can be used to estimate the degree of non-

Gaussianity of a process.

c. Cumulants of the sum of two independent statistical processes are equal to

the sum of their respective cumulants. [6]

2. Variance, Skewness and Kurtosis Measures

Setting 1 2 3, ,τ τ τ equal to 0 in (2.20), (2.21), (2.22), and assuming that m1=0, leads

to the variance 1γ , skewness 2γ , and kurtosis 3γ measures:

10

 { }2
2 2() (0),E x n cγ = = (2.23)

{ }3

3 3

()
,

E x n
γ

σ
= (2.24)

{ }4

4 4

()
,

E x n
γ

σ
= (2.25)

where σ is the standard deviation around the mean of the signal. [7]

C. THE BOOTSTRAP

The Bootstrap is a powerful technique for assessing the accuracy of a parameter

estimator in situations where conventional techniques are not applicable [8]. In many

applications, one needs to estimate one or more parameters of a random process, and/or

calculate some statistical parameters such as the mean or variance. Most of the estimation

techniques used for this purpose assume that the set of samples used in the estimation is

large enough to reach asymptotic results. However, in practice this assumption usually

does not hold as the sample set may not be large enough or the samples may be non-

stationary. The Bootstrap scheme randomly reassigns the observations, recomputes the

estimates many times, and treats these reassignments as repeated experiments. In this

section, first the basic Bootstrap principle is stated. Next, the usage of Bootstrap in

estimating the confidence interval for a parameter is discussed, and finally this discussion

is extended to hypothesis testing.

1. Basic Principle

Let x={x1, x2,…, xn} be a collection of n independent and identically distributed

random variables drawn from an unknown distribution, D. Let p denote an unknown

statistical parameter of D such as the mean or the variance, and µp denote an estimator of

p, calculated from x. If the estimate µp is to be used in place of the real parameter p, it

may be important to know the sampling distribution of µp . The distribution of µp may be

estimated with the Bootstrap method, and is obtained by resampling many times from a

distribution µD , chosen to be close to D, such that µD approaches D as n → ∞ . Note that

11

the choice of µD is not unique. If the type of D is known but its statistical parameters are

not known, then µD is chosen as a distribution of the same type as D, with the statistical

parameters obtained from x. For example, if we know that the data is Gaussian but do not

know its mean and variance, we perform the resamplings assuming the data to have the

same mean and variance as x has. This approach is called the parametric Bootstrap. If

nothing is known about D, the resamplings are drawn from x with replacement, so that

each value in a resample set has probability equal to 1/n. This approach is called the

nonparametric Bootstrap.

2. Parameter Confidence Interval

The Bootstrap principle may also be applied to obtain a (1)100%α− confidence

interval for the parameter p. First, the data set is resampled many times such that each

resampled set is of the same size as the data. Next, an estimator µ
kp is obtained from each

resampled set, where 1,...,k N= and N is the number of repetitions. Then, the estimates

µ
kp are sorted in increasing order. Finally the indices of the lower limit µ

Lp and the upper

limit µ
Up of the estimates in

 µ µ() 1L UP p p p α≤ ≤ = − (2.26)

are obtained by using

2

N
L

α =   
 (2.27)

and

 1,U N L= − + (2.28)

where A   denotes the integer part of the value A.[8]

3. Hypothesis Testing

a. Description

Suppose one needs to perform a hypothesis test, such as 0:H p p≤

against the hypothesis 0:K p p> , where 0p is given. A new statistic, defined as

12

 µ µ
µ

0p p
T

σ

−
= (2.29)

may be selected, where µσ is the estimator of the standard deviation σ of µp . The

estimator for the standard deviation µσ of µp will be defined later.

To perform the hypothesis testing, one first draws random sequences
*
1x , *

2x ,..., *
Nx , of the same size as x, with replacement from x. Note that * does not denote

complex conjugation, but means that this is a resampled set, or a parameter obtained from

a resampled set. Then the statistic µ*
T is estimated from each sequence *x as

 µ µ µ
µ

*
*

*

p p
T

σ

−
= , (2.30)

where µ *
p and µ*

σ are estimated parameters obtained from the resample *x , instead of x,

and the constant 0p is replaced with µp . Note that µσ is included as a scale factor in the

calculation of µT . Dividing by µσ is called Bootstrap pivoting and it is done to ensure µT

is asymptotically pivotal when n → ∞ , i.e., the asymptotic distribution of µT does not

depend on any unknown parameters. Replacing 0p with µp and using Bootstrap pivoting

is important because the Bootstrap distribution of µ µ µ µ* * *
() /T p p σ= − is a better

approximation to the distribution of µ µ µ
0() /T p p σ= − under H, than the Bootstrap

distribution of µ µ**S p p= − is to the distribution of µ
0S p p= − under H [8, 9]. Next, the

set of test statistics µ*
1T , µ *

2T ,…, µ*
NT are sorted by increasing order, and the hypothesis H is

rejected if µ µ*
()MT T> , where M is chosen according to N and the level of significance α as

[8, pp. 62]

 (1)(1)M N a= + − . (2.31)

13

Note that the test statistic µT is given by

 µ
µ

µ
0p p

T
σ

−
= , (2.32)

when the hypotheses to be tested are 0:H p p= against 0:K p p≠ .

b. Estimation of the Standard Deviation for µp

The parameter µσ can be estimated by using the Bootstrap. Towards that

end, resamples of the same length as the data set x, called *x are drawn from x randomly

with replacement, to obtain a total of B resamples. After resampling, the Bootstrap

estimates µ *
p are calculated in the same manner as µp was, but with resamples *x instead

of x. As a result, the standard deviation µσ of µp is estimated by

 µ µ µ* *
2

1 1

1 1
() .

1

B B

b b
b b

p p
B B

σ
= =

= −
− ∑ ∑ (2.33)

In this chapter we presented the processing techniques that we used in the

proposed denoising scheme. In the next chapter we will discuss the proposed denoising

scheme.

14

THIS PAGE INTENTIONALLY LEFT BLANK

15

III. DENOISING USING THE KURTOSIS AND THE BOOTSTRAP

A. INTRODUCTION

Fourier and Wavelet transforms decompose a signal into several frequency bands.

As a result, white Gaussian noise components affect all frequency bands. The proposed

technique examines each frequency band and tends to minimize the white noise

contribution. First, we obtain the signal time–frequency representation (or time-scale

representation in the Wavelet transform case). Next, each frequency band is tested for

Gaussianity, and thresholding is performed on the spectral location found to be Gaussian.

Last, the signal is transformed to the time domain using the appropriate inverse

transform. The following sections discuss two different implementations using Fourier

and Wavelet transformations.

B. FAST FOURIER TRANSFORM BASED DENOISING

The FFT-based denoising scheme is performed in four steps, as illustrated in

Figure 3. For computational convenience, the signal length is assumed to be 512 points.

A longer data set could have been used, resulting in more frequency bands, and more

computations. A data set of minimum length of 512 allows separation in time and

frequency. A shorter segment will not provide a reasonable number of time-frequency

cells.

4:1 overlap
windowing

F
F
T

Gaussianity
test

Gaussianity
test

thresholding

thresholding

no change

no change

OR

I
F
F
T

original
signal

noise

recovered
signal

OR

real

imaginary

yes

yes

no

no

X(t,f)

Step 1 Step 2 Step 3 Step 4

4:1 overlap
windowing

F
F
T

Gaussianity
test

Gaussianity
test

thresholding

thresholding

no change

no change

OR

I
F
F
T

original
signal

noise

recovered
signal

OR

real

imaginary

yes

yes

no

no

X(t,f)

Step 1 Step 2 Step 3 Step 4

Figure 3. FFT-based denoising scheme.

16

1. Short-Time Fourier Transform Step

In the first step, the data is divided into 32 data-point segments and weighted by a

triangular window. A four-to-one overlap is used to obtain a reasonable data size. Then,

each segment is transformed to the frequency domain with the Fast Fourier Transform.

This results in 17 frequency bands. A larger data set would have allowed for a larger

segment size. The STFT information is contained in a matrix of dimensions 61 by 32

elements for a data length of 512 points, where the first number corresponds to the time

dimension and the second one corresponds to the frequency dimension.

2. Gaussianity Test Step

The second step tests the Gaussianity of the transformed values in each frequency

band, where real and imaginary parts of the data are tested separately with the kurtosis.

Recall that the normalized kurtosis value for a Gaussian data sequence is equal to 3.

Hence, looking at the kurtosis value may give an idea of a sequence’s Gaussianity,

provided the data length is sufficient for the estimation to be meaningful. However, the

sequences in this particular scheme are of length equal to 61, which may not be sufficient

for meaningful estimations. Therefore, the Gaussianity test is implemented as a

hypothesis test, with the hypothesis : 3H kurtosisof thedata = , and the hypothesis

: 3K kurtosisof thedata ≠ . The sequence is found to be Gaussian when the hypothesis H

is true, meaning the kurtosis value for the data sequence is 3 within the specified

confidence interval. However, the sequence is found to be non-Gaussian when hypothesis

K is true, meaning the kurtosis is not equal to 3 within the selected confidence interval.

This hypothesis testing is performed using the Bootstrap method discussed earlier in

Chapter 2. An empirical confidence interval 0.05α = was selected here.

3. Thresholding Step

Signal components are found in a particular sequence when some frequency

bands are estimated to be non-Gaussian for both real and imaginary parts. Thresholding is

applied to each band estimated to be Gaussian, to minimize noise effects in these bands.

Two thresholding schemes are considered below.

17

a. Hard Thresholding

Hard thresholding zeroes out all values in the frequency band that is found

to be Gaussian. The hard thresholding coefficient is

0, if thebandisGaussian
1, if thebandisnotGaussian.hc


= 


 (3.1)

b. Soft Thresholding

Soft Thresholding is obtained by multiplying values in the specific

frequency band that is found to be Gaussian, by a coefficient between 0 and 1. Using a

coefficient of 0 is the same as hard thresholding, whereas using a coefficient of 1 is the

same as leaving the frequency band undisturbed. The soft thresholding coefficient is

calculated using

µ

43

1.5sc
γ−

= , (3.2)

where µ4γ is the bootstrapped kurtosis of the particular frequency band, and denotes

the absolute value. The bootstrapped kurtosis value µ4γ is limited not to exceed 4.5, which

will be explained later. The bootstrapped kurtosis value µ4γ is obtained by using the

Bootstrap principle, which calls for resamplings from the data set many times with

replacement, to obtain N resampled sets of the same length as the original data set. Next,

the kurtosis value for each resample is found. Finally, the Bootstrapped kurtosis µ4γ is

defined as the estimated mean obtained from N kurtosis values. It should be noted that the

thresholding coefficient c is a function of the frequency band’s degree of Gaussianity.

Equation (3.1) shows that the coefficient c gets closer to 0 as the bootstrapped kurtosis

value µ4γ for a specific frequency band gets closer to the theoretical value 3, and vice

versa. Therefore, the closer a frequency band gets to being Gaussian, the smaller

contribution it has after soft thresholding.

Recall that frequency bands to be thresholded are those that passed the

Gaussianity test. Therefore, one would expect their corresponding bootstrapped kurtosis

18

estimates to be close to the theoretical value 3. However in some cases, the estimated

bootstrapped kurtosis value may be far off from 3. For example, a few values in the band

may be higher than the others especially when a frequency bin contains a short data

segment. In this case, the band may pass the Gaussianity test as most of the band is

Gaussian, but may still have a bootstrapped kurtosis value high enough to obtain a

thresholding coefficient c greater than 1. Note that a thresholding coefficient greater than

1 would amplify noise contributions in the frequency band, instead of suppressing them.

Therefore, the bootstrapped kurtosis value µ4γ is limited to 4.5 in (3.1) to avoid such

potential noise amplification. This value is chosen empirically. Thus, if the bootstrapped

kurtosis value of a specific frequency band is greater than 4.5, the data point with the

largest absolute value in that band is stored away and replaced with a zero. Then, the

bootstrapped kurtosis for that band is estimated again. This procedure is repeated until a

kurtosis value less than or equal to 4.5 is obtained. However, the number of repetitions

should be limited to ensure that most of the data is not zeroed out, to prevent

bootstrapped kurtosis estimation problems. An empirical limit of one third of the number

of time frames defined in the STFT. Note that if the estimated kurtosis value is still

greater than 4.5 after that many iterations, then it is set to 4.5, which provides a

thresholding coefficient equal to 1. This causes no change on the frequency band under

consideration.

After multiplying the frequency band with the thresholding coefficient, the

values that were removed to limit the kurtosis estimation are reinserted into their original

locations. This allows for the non-Gaussian values, which may correspond to the signal

components, to not be affected by the thresholding step.

4. Inverse Fourier Transform

Real and imaginary parts of the frequency bands are combined to form the time-

frequency representation matrix after the thresholding step, and the recovered signal is

obtained using the inverse Fourier transform.

19

C. WAVELET TRANSFORM BASED DENOISING

The Wavelet transform-based denoising scheme is similar to the FFT-based

scheme, as illustrated in Figure 4. Note that only real valued transforms are obtained in

this case due to the real wavelet transform kernel form selected in our work (Daubechies

wavelets of order 3, 4 or 5). The choice of Daubechies wavelets was motivated by the

earlier works in GSM signal denoising reported by Aktas and Mantis [10, 11]. This

denoising scheme is performed in four steps.

W
T

Gaussianity
test

thresholding

no change

I
W
T

original
signal

noise

recovered
signal

OR
yes

no

Step 1 Step 2 Step 3 Step 4

W
T

Gaussianity
test

thresholding

no change

I
W
T

original
signal

noise

recovered
signal

OR
yes

no

Step 1 Step 2 Step 3 Step 4

Figure 4. WT-based denoising scheme.

1. The Wavelet Transform

First, the Wavelet transform is applied to the noisy signal. Three-, four-, or five-

level decompositions are considered in this work, because simulations showed that

higher-level decompositions do not improve performance, given the data length

considered (512).

2. Gaussianity Test

The approximation and detail coefficients of a Gaussian data set remain Gaussian

[12]. Thus, detail and approximation coefficients are tested for Gaussianity and a decision

is made for each.

20

3. Thresholding

The same thresholding procedure as that was considered earlier for the FFT-based

denoising scheme is applied to the detail coefficients. However, thresholding the

approximation coefficients may result in removing a significant portion of the signal. One

can use one of the following four schemes to threshold the approximation coefficients to

minimize potential distortion: Apply the thresholding scheme as that used on the detail

coefficients, leave coefficients unperturbed, filter the approximation coefficients using a

median filter of order three, or use a predictor of order two. The last two options were

investigated as ways to smooth the approximation coefficients but they did not perform

as good as the first two. Results for these operations are discussed in the next chapter.

4. Inverse Wavelet Transform

Finally, updated approximation and detail coefficients are inverse Wavelet

transformed to obtain the recovered signal.

In this chapter the proposed denoising scheme was discussed in detail. This

scheme was tested using three test signals. The test signal descriptions and the simulation

results are presented in the next chapter.

21

IV. SIGNAL DESCRIPTION AND SIMULATION RESULTS

The denoising scheme presented in the previous chapter was tested using three

test signals. The codes used for the simulations are presented in Appendix A. In this

chapter the test signals are described and the simulation results are summarized.

A. SIGNAL DESCRIPTION

Three different types of test signals are used: a sinusoid, a chirp with constant

amplitude, and a chirp with amplitude increasing in an RC time constant fashion, not to

exceed a given maximum value. These signals are described below.

1. Sinusoidal Signal

The frequency of the sinusoidal signal is selected randomly for every trial, where

the frequency range is limited to avoid aliasing and DC signals. Figure 5 shows an

example where 0 10/512f = , and the sampling frequency 1sf = .

0 50 100 150 200 250 300 350 400 450 500
-2

-1

0

1

2

Figure 5. Sinusoidal test signal; frequency 0 10/512f = , sampling frequency 1sf = .

2. Constant Amplitude Chirp

The constant amplitude chirp used in the simulations is obtained by

3470

() sin
40

s t
t

 =  + 
. (4.1)

The signal sampled with sampling frequency 1sf = is shown in Figure 6.a.

22

3. Chirp With an RC Time Constant-Like Amplitude Increase

This signal has a frequency starting with a high value and decreasing in time.

However, the amplitude of the signal starts with a small value and increases with time.

The increasing amplitude chirp is obtained by

(9)(512) 2 547.05

() sin
521 35.05

t t
s t

t
π+ −  =  + 

. (4.2)

This test signal sampled with sampling frequency, 1sf = , was obtained from Wavelab

[13] and is illustrated in Figure 6.b.

0 50 100 150 200 250 300 350 400 450 500
-2

-1

0

1

2

(a) Constant amplitude chirp

0 50 100 150 200 250 300 350 400 450 500
-2

-1

0

1

2

(b) Increasing amplitude chirp

Figure 6. (a) Second test signal, (b) Third test signal.

B. SIMULATION RESULTS

MATLAB [14] simulations were performed to test the performance of the

proposed schemes. One hundred trials are considered for both schemes for signal-to-noise

ratio (SNR) values ranging between –6 dB and 6 dB. To perform the hypothesis test in

23

the second step of both FFT-based and WT-based schemes, the Bootstrap MATLAB

Toolbox [15] was used. The MATLAB code is included in Appendix A.

The mean square error (MSE) and cross-correlation coefficients between original

and recovered signals were selected as performance criteria. The MSE was initially

selected as it is commonly used in signal processing applications to measure signal

differences in the time domain. It is defined as:

 µ 2

1 1

1 1
() ()

M N

j j
j i

MSE s i s i
M N= =

 
= − 

 
∑ ∑ , (4.3)

where M is the number of trials, N is the signal length, ()js i and µ()js i are the ith data

sample of the original signal and the recovered signal at jth trial, respectively. Note that

the MSE may not always be useful in evaluating actual performances. For example, in a

denoising scheme when the recovered signal is close to the original version in most of the

signal duration but it is very different for a short duration, the overall performance of the

scheme can be satisfactory but at the same time the MSE may be large. In addition,

simulations showed the MSE performances to be very similar on a large portion of the

schemes investigated. Therefore, we considered an additional performance criterion,

based on the cross-correlation coefficient to complement the information given by the

MSE criterion. Recall that the normalized cross-correlation coefficient is commonly used

to evaluate signal similarities and is defined as:

 *

22 1

1 1

1
() ()

() ()

N

N N
i

i i

r s i s i

s i s i
=

= =

= ∑
∑ ∑

$
$

, (4.4)

where *() denotes complex conjugation. Note that the cross-correlation coefficient r

should be equal to 1 for a perfectly reconstructed noise-free signal. The closer the

magnitude of r gets to 0, the worse the denoised signal will be. The distance measure

between 1 and the normalized cross-correlation coefficient is given by

 2

1

1
[1]

M

j
j

d r
M =

= −∑ , (4.5)

24

where M is the number of trials and jr is the cross-correlation at lag zero for the jth trial.

The resulting measure d is the additional criterion used to evaluate the denoising

schemes’ performances in extracting the noise-free signal from the noisy signal.

In our simulations sometimes the MSE performances of various schemes were

close to each other and it was difficult to make a distinction among them. In this kind of

cases the distance measure r was used in making a distinction.

The proposed denoising schemes are compared with the original Wavelet

shrinkage algorithm, which was introduced by Donoho and Johnstone [16, 17] to denoise

signals embedded in additive white Gaussian noise with unit variance. Note that our

schemes do not require knowledge of the noise variance levels to be applied, which is not

the case for the original Donoho and Johnstone scheme. Also note that variable noise

variances had been used in the simulations for the proposed scheme. Therefore the setup

for the simulations needed to be changed before comparing the simulations for the

proposed schemes with the Wavelet shrinkage algorithm. The Wavelet shrinkage

algorithm is defined and comparison results are presented in Appendix C.

1. Fast Fourier Transform-Based Denoising

Performance criteria for the three test signals are illustrated for both thresholding

options, in Figures 7 to 9. Examples of noisy signals and their recovered versions

obtained by FT-based denoising scheme are included in Appendix B.

a. Sinusoidal Signal

Results, shown in Figure 7, indicate that hard and soft thresholding

schemes have similar performances at all SNR values considered.

25

-6 -4 -2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25
(a) Distance measure for sinusoidal signal

SNR

d

hard
soft

-6 -4 -2 0 2 4 6
10

-2

10
-1

10
0

10
1

(b) MSE for sinusoidal signal

SNR

MSE

hard
soft

Figure 7. Distance measure d and MSE performance criteria for the sinusoidal signal; FFT-based

denoising.

b. Constant Amplitude Chirp

The MSE results shown in Figure 8 indicate no significant differences in

thresholding scheme performances, while the distance measure results indicate better

performance for the soft thresholding scheme at low and medium SNR levels.

26

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4
(a) Distance measure for constant amplitude chirp signal

SNR

d

hard
soft

-6 -4 -2 0 2 4 6

10
-0.9

10
0

(b) MSE for constant amplitude chirp signal

SNR

MSE

hard
soft

Figure 8. Distance measure d and MSE performance criteria for constant amplitude chirp signal;

FFT-based denoising.

c. Chirp With an RC Time Constant-Like Amplitude Increase

Results shown in Figure 9 indicate that both thresholding schemes have

similar MSE performances for SNR values below –3 dB, and that the soft thresholding

scheme performs better for SNR values above –3 dB. The distance measure criterion

indicates a better performance for soft thresholding for all SNR levels investigated.

27

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5
(a) Distance measure for increasing amplitude chirp signal

SNR

d

hard
soft

-6 -4 -2 0 2 4 6
10

-0.8

10
-0.4

10
0

(b) MSE for increasing amplitude chirp signal

SNR

MSE

hard
soft

Figure 9. Distance measure d and MSE performance criteria for increasing amplitude chirp signal;

FFT-based denoising.

2. Wavelet Transform-Based Denoising

Many parameters affect the performance of the wavelet transform-based

denoising scheme. Recall that we consider four thresholding implementation schemes on

the approximation coefficients: approximation coefficients left unperturbed (method 1),

approximation coefficients thresholded identical to the detail coefficients (method 2),

approximation coefficients median filtered with a filter of length three (method 3), and

using an order-two predictor (method 4). Methods 3 and 4 do not perform as well as the

first two methods because they oversmooth the approximation coefficients sequence,

causing loss of signal power and degradation in the performance of the denoising scheme.

Other parameters are the number of decomposition levels and the order of the Daubechies

wavelet to be used (3, 4 and 5). The numbers in the figure legends next to the

thresholding types are the Daubechies wavelet orders. MSE values obtained for all

28

schemes are close to each other and do not provide much information about relative

performances. As a result, we consider the distance measure d to compare performances.

In addition, we only show results obtained for the best of the 4 methods for the

approximation coefficients and the best of the 3 wavelet based decompositions (3, 4 or 5

level decompositions). Examples for noisy signals and their recovered versions obtained

with WT-based denoising schemes are included in Appendix B.

a. Sinusoidal Signal

Results show that best performances are obtained with method 2 for this

signal type. Figure 10 presents the WT-based scheme performance obtained for a 4-level

decomposition with different wavelet orders and both thresholding schemes. Note that the

sinusoidal signal has a constant frequency remaining in one of the frequency bands

formed by the wavelet transform for the whole signal duration. Results show that the

performance of the WT-based denoising scheme depends on the frequency of the specific

test signal and the level of wavelet decomposition. Note that test signal frequencies were

picked randomly for each trial. It should also be noted that when using method 1, the

signal is left untouched only when it is located in the lowest frequency band (i.e., the

band containing the approximation coefficients). However, noise when present is also left

untouched in that lowest frequency band, while no such distinction is present in method

2.

Simulation results show that the soft thresholding scheme outperforms the

hard thresholding implementation at SNR values below 2 dB, while all thresholding

schemes perform similarly for higher SNRs.

29

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

SNR

(a) Distance measure for sinusoidal signal, 4 level decomposition, method 2

d

hard3
soft3
hard4
soft4
hard5
soft5

-6 -4 -2 0 2 4 6
10

-0.8

10
0.1

SNR

(b) MSE for sinusoidal signal, 4 level decomposition, method 2

MSE

hard3
soft3
hard4
soft4
hard5
soft5

Figure 10. Distance measure and MSE for test signal 1, using a Wavelet-based 4-level

decomposition and method 2, with Daubechies wavelet orders 3, 4 and 5.

b. Constant Amplitude Chirp

Results for the WT-based denoising scheme using 4-level decomposition

and method 1 are presented in Figure 11. Method 1 was shown here because simulations

indicated that method 1 has significantly higher performance than method 2 on the

constant amplitude chirp signal. This result was to be expected as this signal has most of

its power at low frequencies. Frequency components exist in several frequency bands,

including the one containing the approximation coefficients. When method 2 is used, the

sequence of approximation coefficients is tested for Gaussianity and may be estimated as

Gaussian when the signal components are very short, resulting in thresholding of the

signal components. However, such a problem does not exist in method 1 where the

approximation coefficients are left untouched. Finally, simulation results show that a

four-level decomposition performs better than a three or five-level decomposition.

30

-6 -4 -2 0 2 4 6
0

0.02

0.04

0.06

0.08

0.1

SNR

(a) Distance measure for constant amplitude chirp signal, 4 level decomposition, method 1

d

hard3
soft3
hard4
soft4
hard5
soft5

-6 -4 -2 0 2 4 6
10

-1

10
0

SNR

(b) MSE for constant amplitude chirp signal, 4 level decomposition, method 1

MSE

hard3
soft3
hard4
soft4
hard5
soft5

Figure 11. Performance for constant amplitude chirp signal, using a Wavelet based 4-level

decomposition and method 1, with Daubechies wavelet orders 3, 4 and 5.

c. Chirp With an RC Time Constant-Like Amplitude Increase

Simulations show method 1 has the best performance of the 4 methods

investigated and associated results are presented in Figure 12. Results shown in Figure 12

indicate that similar performances are obtained for all thresholding schemes and wavelet

orders considered.

31

-6 -4 -2 0 2 4 6
0

0.02

0.04

0.06

0.08

0.1

SNR

(a) Distance measure for increasing amplitude chirp signal, 4 level decomposition, method 1

d

hard3
soft3
hard4
soft4
hard5
soft5

-6 -4 -2 0 2 4 6

10
-1

10
0

SNR

(b) MSE for increasing amplitude chirp signal, 4 level decomposition, method 1

MSE

hard3
soft3
hard4
soft4
hard5
soft5

Figure 12. Performance for increasing amplitude chirp signal, using a Wavelet-based 4-level

decomposition and method 1, with Daubechies wavelet orders 3, 4 and 5.

In this chapter the test signals were described and the simulation results

were summarized. The conclusions are presented in the next chapter.

32

THIS PAGE INTENTIONALLY LEFT BLANK

33

V. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

This work considered a Bootstrap-based denoising scheme to denoise

deterministic signals embedded in additive Gaussian noise. The Bootstrap is a technique

derived for improving the accuracy of a parameter estimator, used especially in situations

where conventional techniques are not valid since the data considered is short in length.

This technique is used for parameter estimation and hypothesis testing in our work.

The proposed Bootstrap-based denoising scheme has four steps. First, the noisy

signal is transformed into a two-dimensional domain, using the Short-Time Fast Fourier

or the Wavelet Transform. Next, Gaussianity tests are performed on the transformed data

on a frequency band basis. No processing is applied to the data when the tested data is

found to be non-Gaussian, as this indicates signal components in the data are dominant

over Gaussian noise components. However, denoising is applied when the data tested is

found to be Gaussian, which indicates that the noise components are dominant. Denoising

is obtained by thresholding the frequency components in specific frequency bands to

minimize noise effects. Finally, the recovered signal is obtained by applying the

appropriate inverse transform.

Denoising scheme performances were investigated using three test signals: a

sinusoid, a constant amplitude chirp and a chirp with increasing amplitude. MSE and

cross-correlation measures were selected to investigate the relative performances of all

four denoising schemes considered in this work. In most cases, for a given SNR the MSE

values obtained for schemes with different decomposition types and levels were similar at

all SNRs and were not useful in discriminating between the various schemes investigated.

However, the distance measure was more sensitive and showed more discriminating

information. Results show that FFT-based schemes perform better than WT-based

schemes on the stationary sinusoid signal type, whereas WT-based scheme outperforms

the FFT-based scheme on the chirp signal types considered. In the FFT case, soft and

hard thresholding schemes perform similarly on the sinusoid, while soft thresholding

outperforms hard thresholding on the chirp signals. Results also show that soft

34

thresholding performs better on the stationary sinusoidal signal type but performs similar

to hard thresholding on the chirps in the WT case. Note that thresholding methods are

performed on the detail coefficients in the WT-based denoising case. However, using

them directly on the approximation coefficients may cause signal loss. Therefore, four

schemes were considered in the simulations: Leaving the approximation coefficients

untouched, using the same thresholding schemes as the detail coefficients, using a median

filter of order 3 on the approximation coefficients, and using a predictor of order 2 on the

approximation coefficients. The second method performs best for the sinusoidal test

signal whereas the first method performs the best for the chirp type test signals.

Daubechies wavelets of orders 3, 4 and 5 were selected in the WT-based

denoising scheme. Simulations show that wavelets of this family with higher orders did

not improve performance for signals with the given length.

The proposed denoising scheme was compared with the Wavelet shrinkage

algorithm, which was introduced by Donoho and Johnstone [16, 17] to denoise signals

embedded in additive white Gaussian noise with unit variance. Results indicate that the

proposed WT-based denoising scheme performs better than the wavelet shrinkage

algorithm for the sinusoidal test signal. However, the wavelet shrinkage algorithm

outperforms the proposed scheme for the chirp type test signals. It should be noted that

these results (Donoho and Johnstone) are restricted to the case of noise with unit

variance.

B. FUTURE WORK

Our study was restricted to one wavelet family (Daubechies) only and further

investigations should consider other types of wavelets to investigate the impact of the

specific wavelet type on the resulting denoising performances.

35

APPENDIX A. MATLAB CODES

MATLAB simulations were performed to were used to test the performance of

the denoising scheme. The codes used are presented in this chapter. The first and second

sections present the codes for the FFT- and WT-based denoising schemes, respectively.

The third section presents the sub-functions that were used in both of these codes.

A. FFT-BASED DENOISING

%%
% %
% testkurtv7: implements the FFT-based denoising scheme on %
% three test signals %
% %
% SYNTAX : testkurtv7 %
% %
% INPUT : none %
% %
% OUTPUT : simulation results saved on disk %
% %
% SUB FUNC : MakeSignal.m %
% kurtosistest.m %
% %
% Written by Hasan E. KAN %
% %
%%

clear
clc
close all

t=1:512;
ampl=sqrt(10.^([.6 0 -.6]));

kurlim=4.5;

for sigtype=1:3
 for trial=1:100
 recksoft=zeros(length(ampl),512);
 reckhard=zeros(length(ampl),512);
 if sigtype==1
 s=sin(2*pi*t*(1+ceil(rand*240))/512);
s=s/sqrt(mean(s.^2));
 sigtypes='sin';
 elseif sigtype==2

36

 s=sin(34.7./[.01:.01:612]);
s=s(41:552);s=s/sqrt(mean(s.^2));
 sigtypes='cch';
 elseif sigtype==3
 s=makesignal('Doppler',521);
s=s(10:521);s=s/sqrt(mean(s.^2));
 sigtypes='ech';
 end
 signal=ones(length(ampl),1)*s;
 sigpwr=sum(signal.^2,2)/512;

 n=randn(length(ampl),512);
 noise=((ampl./std(n'))'*ones(1,512)).*n;
 noipwr=sum(noise.^2,2)/512;

 SNR=10*log10(sigpwr./noipwr);

 x=signal+noise;

 for snr=1:length(ampl)%1:21
 fx=zeros(61,32);
 for segmentno=1:61
 fx(segmentno,:)=fft(x(snr,(segmentno-
1)*8+1:(segmentno-1)*8+32).*triang(32)');
 end
 fksoft=zeros(61,32);
 fksoftr=zeros(61,17);
 fksofti=zeros(61,17);
 fkhard=zeros(61,32);
 fkhardr=zeros(61,17);
 fkhardi=zeros(61,17);
 kurr=zeros(length(ampl),17);
 kuri=zeros(length(ampl),17);
 for segmentno=1:17

[fksoftr(:,segmentno),fkhardr(:,segmentno),kurr(segmentno)]=kurto
sistest(real(fx(:,segmentno)),kurlim);
 if imag(fx(:,segmentno))~=0

[fksofti(:,segmentno),fkhardi(:,segmentno),kuri(segmentno)]=kurto
sistest(imag(fx(:,segmentno)),kurlim);
 end
 end
 fksoft(:,1:17)=fksoftr(:,1:17)+j*fksofti(:,1:17);
 fkhard(:,1:17)=fkhardr(:,1:17)+j*fkhardi(:,1:17);
 fksoft(:,18:32)=conj(fliplr(fksoft(:,2:16)));
 fkhard(:,18:32)=conj(fliplr(fkhard(:,2:16)));
 for segmentno=1:61
 recksoft(snr,(segmentno-1)*8+1:(segmentno-
1)*8+32)=recksoft(snr,(segmentno-1)*8+1:(segmentno-
1)*8+32)+ifft(fksoft(segmentno,:));

37

 reckhard(snr,(segmentno-1)*8+1:(segmentno-
1)*8+32)=reckhard(snr,(segmentno-1)*8+1:(segmentno-
1)*8+32)+ifft(fkhard(segmentno,:));
 end
 end
 recksoft=recksoft*0.5;
 reckhard=reckhard*0.5;
 msesoft(:,trial)=sum((signal-recksoft).^2,2)/512;
 msehard(:,trial)=sum((signal-reckhard).^2,2)/512;

 for snr=1:21

corsoft(snr,trial)=xcorr(s,recksoft(snr,:),0,'coeff');

corhard(snr,trial)=xcorr(s,reckhard(snr,:),0,'coeff');
 end
 end
 save(sprintf('mse%s',sigtypes),'msemed','msesoft','msehard')
 save(sprintf('cor%s',sigtypes),'corsoft','corhard')
end

B. WT-BASED DENOISING

%%
% %
% testkurtv7: implements the WT-based denoising scheme on %
% three test signals %
% %
% SYNTAX : testwav2 %
% %
% INPUT : none %
% %
% OUTPUT : simulation results saved on disk %
% %
% SUB FUNC : MakeSignal.m %
% kurtosistest.m %
% %
% Written by Hasan E. KAN %
% %
%%

clear
clc
close all

t=1:512;
ampl=sqrt(10.^([.6 0 -.6]));

kurlim=4.5;

rec5db3soft=zeros(length(ampl),512,4);
rec5db3hard=zeros(length(ampl),512,4);

38

rec4db3soft=zeros(length(ampl),512,4);
rec4db3hard=zeros(length(ampl),512,4);
rec3db3soft=zeros(length(ampl),512,4);
rec3db3hard=zeros(length(ampl),512,4);

rec5db4soft=zeros(length(ampl),512,4);
rec5db4hard=zeros(length(ampl),512,4);
rec4db4soft=zeros(length(ampl),512,4);
rec4db4hard=zeros(length(ampl),512,4);
rec3db4soft=zeros(length(ampl),512,4);
rec3db4hard=zeros(length(ampl),512,4);

rec5db5soft=zeros(length(ampl),512,4);
rec5db5hard=zeros(length(ampl),512,4);
rec4db5soft=zeros(length(ampl),512,4);
rec4db5hard=zeros(length(ampl),512,4);
rec3db5soft=zeros(length(ampl),512,4);
rec3db5hard=zeros(length(ampl),512,4);

for sigtype=1:3
 for trial=1:100
 if sigtype==1

s=sin(2*pi*t*(1+ceil(rand*240))/512);s=s/sqrt(sum(s.^2)/512);
 sigtypes='sin';
 elseif sigtype==2

s=sin(34.7./[.01:.01:612]);s=s(41:552);s=s/sqrt(sum(s.^2)/512);
 sigtypes='cch';
 elseif sigtype==3

s=makesignal('Doppler',521);s=s(10:521);s=s/sqrt(sum(s.^2)/512);
 sigtypes='ech';
 end
 signal=ones(length(ampl),1)*s;
 sigpwr=sum(signal.^2,2)/512;

 n=randn(length(ampl),512);
 noise=((ampl./std(n'))'*ones(1,512)).*n;
 noipwr=sum(noise.^2,2)/512;

 SNR=10*log10(sigpwr./noipwr);

 x=signal+noise;

 for snr=1:length(ampl)
 [cdb3(snr,:),ldb3]=wavedec(x(snr,:),3,'db3');
 a3db3(snr,:)=appcoef(cdb3(snr,:),ldb3,'db3',3);

[d1db3(snr,:),d2db3(snr,:),d3db3(snr,:)]=detcoef(cdb3(snr,:),ldb3
,[1,2,3]);
 [a4db3(snr,:),d4db3(snr,:)]=dwt(a3db3(snr,:),'db3');

39

 [a5db3(snr,:),d5db3(snr,:)]=dwt(a4db3(snr,:),'db3');

 [cdb4(snr,:),ldb4]=wavedec(x(snr,:),3,'db4');
 a3db4(snr,:)=appcoef(cdb4(snr,:),ldb4,'db4',3);

[d1db4(snr,:),d2db4(snr,:),d3db4(snr,:)]=detcoef(cdb4(snr,:),ldb4
,[1,2,3]);
 [a4db4(snr,:),d4db4(snr,:)]=dwt(a3db4(snr,:),'db4');
 [a5db4(snr,:),d5db4(snr,:)]=dwt(a4db4(snr,:),'db4');

 [cdb5(snr,:),ldb5]=wavedec(x(snr,:),3,'db5');
 a3db5(snr,:)=appcoef(cdb5(snr,:),ldb5,'db5',3);

[d1db5(snr,:),d2db5(snr,:),d3db5(snr,:)]=detcoef(cdb5(snr,:),ldb5
,[1,2,3]);
 [a4db5(snr,:),d4db5(snr,:)]=dwt(a3db5(snr,:),'db5');
 [a5db5(snr,:),d5db5(snr,:)]=dwt(a4db5(snr,:),'db5');
 end

ra5db3soft=zeros(length(ampl),length(a5db3));ra5db3hard=zeros(len
gth(ampl),length(a5db3));

ra4db3soft=zeros(length(ampl),length(a4db3));ra4db3hard=zeros(len
gth(ampl),length(a4db3));

ra3db3soft=zeros(length(ampl),length(a3db3));ra3db3hard=zeros(len
gth(ampl),length(a3db3));

rd5db3soft=zeros(length(ampl),length(d5db3(1,:)));rd5db3hard=zero
s(length(ampl),length(d5db3(1,:)));

rd4db3soft=zeros(length(ampl),length(d4db3));rd4db3hard=zeros(len
gth(ampl),length(d4db3));

rd3db3soft=zeros(length(ampl),length(d3db3));rd3db3hard=zeros(len
gth(ampl),length(d3db3));

rd2db3soft=zeros(length(ampl),length(d2db3));rd2db3hard=zeros(len
gth(ampl),length(d2db3));

rd1db3soft=zeros(length(ampl),length(d1db3));rd1db3hard=zeros(len
gth(ampl),length(d1db3));

ra5db4soft=zeros(length(ampl),length(a5db4));ra5db4hard=zeros(len
gth(ampl),length(a5db4));

ra4db4soft=zeros(length(ampl),length(a4db4));ra4db4hard=zeros(len
gth(ampl),length(a4db4));

ra3db4soft=zeros(length(ampl),length(a3db4));ra3db4hard=zeros(len
gth(ampl),length(a3db4));

40

rd5db4soft=zeros(length(ampl),length(d5db4));rd5db4hard=zeros(len
gth(ampl),length(d5db4));

rd4db4soft=zeros(length(ampl),length(d4db4));rd4db4hard=zeros(len
gth(ampl),length(d4db4));

rd3db4soft=zeros(length(ampl),length(d3db4));rd3db4hard=zeros(len
gth(ampl),length(d3db4));

rd2db4soft=zeros(length(ampl),length(d2db4));rd2db4hard=zeros(len
gth(ampl),length(d2db4));

rd1db4soft=zeros(length(ampl),length(d1db4));rd1db4hard=zeros(len
gth(ampl),length(d1db4));

ra5db5soft=zeros(length(ampl),length(a5db5));ra5db5hard=zeros(len
gth(ampl),length(a5db5));

ra4db5soft=zeros(length(ampl),length(a4db5));ra4db5hard=zeros(len
gth(ampl),length(a4db5));

ra3db5soft=zeros(length(ampl),length(a3db5));ra3db5hard=zeros(len
gth(ampl),length(a3db5));

rd5db5soft=zeros(length(ampl),length(d5db5));rd5db5hard=zeros(len
gth(ampl),length(d5db5));

rd4db5soft=zeros(length(ampl),length(d4db5));rd4db5hard=zeros(len
gth(ampl),length(d4db5));

rd3db5soft=zeros(length(ampl),length(d3db5));rd3db5hard=zeros(len
gth(ampl),length(d3db5));

rd2db5soft=zeros(length(ampl),length(d2db5));rd2db5hard=zeros(len
gth(ampl),length(d2db5));

rd1db5soft=zeros(length(ampl),length(d1db5));rd1db5hard=zeros(len
gth(ampl),length(d1db5));
 for method=1:4
 if method==1
 ra5db3soft=a5db3;ra5db3hard=a5db3;
 ra4db3soft=a4db3;ra4db3hard=a4db3;
 ra3db3soft=a3db3;ra3db3hard=a3db3;
 ra5db4soft=a5db4;ra5db4hard=a5db4;
 ra4db4soft=a4db4;ra4db4hard=a4db4;
 ra3db4soft=a3db4;ra3db4hard=a3db4;
 ra5db5soft=a5db5;ra5db5hard=a5db5;
 ra4db5soft=a4db5;ra4db5hard=a4db5;
 ra3db5soft=a3db5;ra3db5hard=a3db5;
 method1='no operation on approximation coeff.';

41

 elseif method==2
 for snr=1:length(ampl)

[ra5db3soft(snr,:),ra5db3hard(snr,:),kura5db3(snr)]=kurtosistest(
a5db3(snr,:),kurlim);

[ra4db3soft(snr,:),ra4db3hard(snr,:),kura4db3(snr)]=kurtosistest(
a4db3(snr,:),kurlim);

[ra3db3soft(snr,:),ra3db3hard(snr,:),kura3db3(snr)]=kurtosistest(
a3db3(snr,:),kurlim);

[ra5db4soft(snr,:),ra5db4hard(snr,:),kura5db4(snr)]=kurtosistest(
a5db4(snr,:),kurlim);

[ra4db4soft(snr,:),ra4db4hard(snr,:),kura4db4(snr)]=kurtosistest(
a4db4(snr,:),kurlim);

[ra3db4soft(snr,:),ra3db4hard(snr,:),kura3db4(snr)]=kurtosistest(
a3db4(snr,:),kurlim);

[ra5db5soft(snr,:),ra5db5hard(snr,:),kura5db5(snr)]=kurtosistest(
a5db5(snr,:),kurlim);

[ra4db5soft(snr,:),ra4db5hard(snr,:),kura4db5(snr)]=kurtosistest(
a4db5(snr,:),kurlim);

[ra3db5soft(snr,:),ra3db5hard(snr,:),kura3db5(snr)]=kurtosistest(
a3db5(snr,:),kurlim);
 end
 method1='using threshold on approximation
coeff.';
 elseif method==3

ra5db3soft=medfilt1(a5db3',3)';ra5db3hard=ra5db3soft;

ra4db3soft=medfilt1(a4db3',3)';ra4db3hard=ra4db3soft;

ra3db3soft=medfilt1(a3db3',3)';ra3db3hard=ra3db3soft;

ra5db4soft=medfilt1(a5db4',3)';ra5db4hard=ra5db4soft;

ra4db4soft=medfilt1(a4db4',3)';ra4db4hard=ra4db4soft;

ra3db4soft=medfilt1(a3db4',3)';ra3db4hard=ra3db4soft;

ra5db5soft=medfilt1(a5db5',3)';ra5db5hard=ra5db5soft;

ra4db5soft=medfilt1(a4db5',3)';ra4db5hard=ra4db5soft;

ra3db5soft=medfilt1(a3db5',3)';ra3db5hard=ra3db5soft;
 method1='using medfilt3 on approximation coeff.';

42

 else

rra5db3=xcorr(a5db3',2,'unbiased');rra5db3=rra5db3(3:5,4*[0:2]+1)
;

rra4db3=xcorr(a4db3',2,'unbiased');rra4db3=rra4db3(3:5,4*[0:2]+1)
;

rra3db3=xcorr(a3db3',2,'unbiased');rra3db3=rra3db3(3:5,4*[0:2]+1)
;

rra5db4=xcorr(a5db4',2,'unbiased');rra5db4=rra5db4(3:5,4*[0:2]+1)
;

rra4db4=xcorr(a4db4',2,'unbiased');rra4db4=rra4db4(3:5,4*[0:2]+1)
;

rra3db4=xcorr(a3db4',2,'unbiased');rra3db4=rra3db4(3:5,4*[0:2]+1)
;

rra5db5=xcorr(a5db5',2,'unbiased');rra5db5=rra5db5(3:5,4*[0:2]+1)
;

rra4db5=xcorr(a4db5',2,'unbiased');rra4db5=rra4db5(3:5,4*[0:2]+1)
;

rra3db5=xcorr(a3db5',2,'unbiased');rra3db5=rra3db5(3:5,4*[0:2]+1)
;
 for snr=1:length(ampl)

Rxa5db3=toeplitz(rra5db3(:,snr));Rxxa5db3=Rxa5db3(1:2,1:2);

Rxa4db3=toeplitz(rra4db3(:,snr));Rxxa4db3=Rxa4db3(1:2,1:2);

Rxa3db3=toeplitz(rra3db3(:,snr));Rxxa3db3=Rxa3db3(1:2,1:2);

Rxa5db4=toeplitz(rra5db4(:,snr));Rxxa5db4=Rxa5db4(1:2,1:2);

Rxa4db4=toeplitz(rra4db4(:,snr));Rxxa4db4=Rxa4db4(1:2,1:2);

Rxa3db4=toeplitz(rra3db4(:,snr));Rxxa3db4=Rxa3db4(1:2,1:2);

Rxa5db5=toeplitz(rra5db5(:,snr));Rxxa5db5=Rxa5db5(1:2,1:2);

Rxa4db5=toeplitz(rra4db5(:,snr));Rxxa4db5=Rxa4db5(1:2,1:2);

Rxa3db5=toeplitz(rra3db5(:,snr));Rxxa3db5=Rxa3db5(1:2,1:2);
 aa5db3=Rxxa5db3\Rxa5db3(2:3,1);
 aa4db3=Rxxa4db3\Rxa4db3(2:3,1);
 aa3db3=Rxxa3db3\Rxa3db3(2:3,1);
 aa5db4=Rxxa5db4\Rxa5db4(2:3,1);
 aa4db4=Rxxa4db4\Rxa4db4(2:3,1);

43

 aa3db4=Rxxa3db4\Rxa3db4(2:3,1);
 aa5db5=Rxxa5db5\Rxa5db5(2:3,1);
 aa4db5=Rxxa4db5\Rxa4db5(2:3,1);
 aa3db5=Rxxa3db5\Rxa3db5(2:3,1);
 ra5db3soft(snr,:)=filter([0;
aa5db3],1,a5db3(snr,:));
 ra4db3soft(snr,:)=filter([0;
aa4db3],1,a4db3(snr,:));
 ra3db3soft(snr,:)=filter([0;
aa3db3],1,a3db3(snr,:));
 ra5db4soft(snr,:)=filter([0;
aa5db4],1,a5db4(snr,:));
 ra4db4soft(snr,:)=filter([0;
aa4db4],1,a4db4(snr,:));
 ra3db4soft(snr,:)=filter([0;
aa3db4],1,a3db4(snr,:));
 ra5db5soft(snr,:)=filter([0;
aa5db5],1,a5db5(snr,:));
 ra4db5soft(snr,:)=filter([0;
aa4db5],1,a4db5(snr,:));
 ra3db5soft(snr,:)=filter([0;
aa3db5],1,a3db5(snr,:));
 end
 ra5db3soft(:,1:2)=a5db3(:,1:2);
 ra4db3soft(:,1:2)=a4db3(:,1:2);
 ra3db3soft(:,1:2)=a3db3(:,1:2);
 ra5db4soft(:,1:2)=a5db4(:,1:2);
 ra4db4soft(:,1:2)=a4db4(:,1:2);
 ra3db4soft(:,1:2)=a3db4(:,1:2);
 ra5db5soft(:,1:2)=a5db5(:,1:2);
 ra4db5soft(:,1:2)=a4db5(:,1:2);
 ra3db5soft(:,1:2)=a3db5(:,1:2);
 ra5db3hard=ra5db3soft;
 ra4db3hard=ra4db3soft;
 ra3db3hard=ra3db3soft;
 ra5db4hard=ra5db4soft;
 ra4db4hard=ra4db4soft;
 ra3db4hard=ra3db4soft;
 ra5db5hard=ra5db5soft;
 ra4db5hard=ra4db5soft;
 ra3db5hard=ra3db5soft;
 method1='prediction on approximation coeff.';
 end
 for snr=1:length(ampl)

[rd5db3soft(snr,:),rd5db3hard(snr,:),kurd5db3(snr)]=kurtosistest(
d5db3(snr,:),kurlim);

[rd4db3soft(snr,:),rd4db3hard(snr,:),kurd4db3(snr)]=kurtosistest(
d4db3(snr,:),kurlim);

44

[rd3db3soft(snr,:),rd3db3hard(snr,:),kurd3db3(snr)]=kurtosistest(
d3db3(snr,:),kurlim);

[rd2db3soft(snr,:),rd2db3hard(snr,:),kurd2db3(snr)]=kurtosistest(
d2db3(snr,:),kurlim);

[rd1db3soft(snr,:),rd1db3hard(snr,:),kurd1db3(snr)]=kurtosistest(
d1db3(snr,:),kurlim);

[rd5db4soft(snr,:),rd5db4hard(snr,:),kurd5db4(snr)]=kurtosistest(
d5db4(snr,:),kurlim);

[rd4db4soft(snr,:),rd4db4hard(snr,:),kurd4db4(snr)]=kurtosistest(
d4db4(snr,:),kurlim);

[rd3db4soft(snr,:),rd3db4hard(snr,:),kurd3db4(snr)]=kurtosistest(
d3db4(snr,:),kurlim);

[rd2db4soft(snr,:),rd2db4hard(snr,:),kurd2db4(snr)]=kurtosistest(
d2db4(snr,:),kurlim);

[rd1db4soft(snr,:),rd1db4hard(snr,:),kurd1db4(snr)]=kurtosistest(
d1db4(snr,:),kurlim);

[rd5db5soft(snr,:),rd5db5hard(snr,:),kurd5db5(snr)]=kurtosistest(
d5db5(snr,:),kurlim);

[rd4db5soft(snr,:),rd4db5hard(snr,:),kurd4db5(snr)]=kurtosistest(
d4db5(snr,:),kurlim);

[rd3db5soft(snr,:),rd3db5hard(snr,:),kurd3db5(snr)]=kurtosistest(
d3db5(snr,:),kurlim);

[rd2db5soft(snr,:),rd2db5hard(snr,:),kurd2db5(snr)]=kurtosistest(
d2db5(snr,:),kurlim);

[rd1db5soft(snr,:),rd1db5hard(snr,:),kurd1db5(snr)]=kurtosistest(
d1db5(snr,:),kurlim);
 end
 R5db3soft=[ra5db3soft rd5db3soft rd4db3soft
rd3db3soft rd2db3soft rd1db3soft];
 R5db3hard=[ra5db3hard rd5db3hard rd4db3hard
rd3db3hard rd2db3hard rd1db3hard];
 R4db3soft=[ra4db3soft rd4db3soft rd3db3soft
rd2db3soft rd1db3soft];
 R4db3hard=[ra4db3hard rd4db3hard rd3db3hard
rd2db3hard rd1db3hard];
 R3db3soft=[ra3db3soft rd3db3soft rd2db3soft
rd1db3soft];

45

 R3db3hard=[ra3db3hard rd3db3hard rd2db3hard
rd1db3hard];

 R5db4soft=[ra5db4soft rd5db4soft rd4db4soft
rd3db4soft rd2db4soft rd1db4soft];
 R5db4hard=[ra5db4hard rd5db4hard rd4db4hard
rd3db4hard rd2db4hard rd1db4hard];
 R4db4soft=[ra4db4soft rd4db4soft rd3db4soft
rd2db4soft rd1db4soft];
 R4db4hard=[ra4db4hard rd4db4hard rd3db4hard
rd2db4hard rd1db4hard];
 R3db4soft=[ra3db4soft rd3db4soft rd2db4soft
rd1db4soft];
 R3db4hard=[ra3db4hard rd3db4hard rd2db4hard
rd1db4hard];

 R5db5soft=[ra5db5soft rd5db5soft rd4db5soft
rd3db5soft rd2db5soft rd1db5soft];
 R5db5hard=[ra5db5hard rd5db5hard rd4db5hard
rd3db5hard rd2db5hard rd1db5hard];
 R4db5soft=[ra4db5soft rd4db5soft rd3db5soft
rd2db5soft rd1db5soft];
 R4db5hard=[ra4db5hard rd4db5hard rd3db5hard
rd2db5hard rd1db5hard];
 R3db5soft=[ra3db5soft rd3db5soft rd2db5soft
rd1db5soft];
 R3db5hard=[ra3db5hard rd3db5hard rd2db5hard
rd1db5hard];
 for snr=1:length(ampl)

rec5db3soft(snr,:,method)=waverec(R5db3soft(snr,:),[20 20 36 68
131 258 512],'db3');

 rec5db3hard(snr,:,method)=waverec(R5db3hard(snr,:),[20 20
36 68 131 258 512],'db3');

rec4db3soft(snr,:,method)=waverec(R4db3soft(snr,:),[36 36 68 131
258 512],'db3');

 rec4db3hard(snr,:,method)=waverec(R4db3hard(snr,:),[36 36
68 131 258 512],'db3');

rec3db3soft(snr,:,method)=waverec(R3db3soft(snr,:),[68 68 131 258
512],'db3');

 rec3db3hard(snr,:,method)=waverec(R3db3hard(snr,:),[68 68
131 258 512],'db3');

rec5db4soft(snr,:,method)=waverec(R5db4soft(snr,:),[22 22 38 70
133 259 512],'db4');

46

 rec5db4hard(snr,:,method)=waverec(R5db4hard(snr,:),[22 22
38 70 133 259 512],'db4');

rec4db4soft(snr,:,method)=waverec(R4db4soft(snr,:),[38 38 70 133
259 512],'db4');

 rec4db4hard(snr,:,method)=waverec(R4db4hard(snr,:),[38 38
70 133 259 512],'db4');

rec3db4soft(snr,:,method)=waverec(R3db4soft(snr,:),[70 70 133 259
512],'db4');

 rec3db4hard(snr,:,method)=waverec(R3db4hard(snr,:),[70 70
133 259 512],'db4');

rec5db5soft(snr,:,method)=waverec(R5db5soft(snr,:),[24 24 40 71
134 260 512],'db5');

 rec5db5hard(snr,:,method)=waverec(R5db5hard(snr,:),[24 24
40 71 134 260 512],'db5');

rec4db5soft(snr,:,method)=waverec(R4db5soft(snr,:),[40 40 71 134
260 512],'db5');

 rec4db5hard(snr,:,method)=waverec(R4db5hard(snr,:),[40 40
71 134 260 512],'db5');

rec3db5soft(snr,:,method)=waverec(R3db5soft(snr,:),[71 71 134 260
512],'db5');

 rec3db5hard(snr,:,method)=waverec(R3db5hard(snr,:),[71 71
134 260 512],'db5');
 end
 end
 signa=repmat(signal,[1,1,4]);

 mse5db3soft(:,trial,:)=sum((signa-
rec5db3soft).^2,2)/512;
 mse5db3hard(:,trial,:)=sum((signa-
rec5db3hard).^2,2)/512;
 mse4db3soft(:,trial,:)=sum((signa-
rec4db3soft).^2,2)/512;
 mse4db3hard(:,trial,:)=sum((signa-
rec4db3hard).^2,2)/512;
 mse3db3soft(:,trial,:)=sum((signa-
rec3db3soft).^2,2)/512;
 mse3db3hard(:,trial,:)=sum((signa-
rec3db3hard).^2,2)/512;

47

 mse5db4soft(:,trial,:)=sum((signa-
rec5db4soft).^2,2)/512;
 mse5db4hard(:,trial,:)=sum((signa-
rec5db4hard).^2,2)/512;
 mse4db4soft(:,trial,:)=sum((signa-
rec4db4soft).^2,2)/512;
 mse4db4hard(:,trial,:)=sum((signa-
rec4db4hard).^2,2)/512;
 mse3db4soft(:,trial,:)=sum((signa-
rec3db4soft).^2,2)/512;
 mse3db4hard(:,trial,:)=sum((signa-
rec3db4hard).^2,2)/512;

 mse5db5soft(:,trial,:)=sum((signa-
rec5db5soft).^2,2)/512;
 mse5db5hard(:,trial,:)=sum((signa-
rec5db5hard).^2,2)/512;
 mse4db5soft(:,trial,:)=sum((signa-
rec4db5soft).^2,2)/512;
 mse4db5hard(:,trial,:)=sum((signa-
rec4db5hard).^2,2)/512;
 mse3db5soft(:,trial,:)=sum((signa-
rec3db5soft).^2,2)/512;
 mse3db5hard(:,trial,:)=sum((signa-
rec3db5hard).^2,2)/512;
 for snr=1:21
 for method=1:4

cor3db3soft(snr,trial,method)=xcorr(s,rec3db3soft(snr,:,method),0
,'coeff');

cor3db4soft(snr,trial,method)=xcorr(s,rec3db4soft(snr,:,method),0
,'coeff');

cor3db5soft(snr,trial,method)=xcorr(s,rec3db5soft(snr,:,method),0
,'coeff');

cor4db3soft(snr,trial,method)=xcorr(s,rec4db3soft(snr,:,method),0
,'coeff');

cor4db4soft(snr,trial,method)=xcorr(s,rec4db4soft(snr,:,method),0
,'coeff');

cor4db5soft(snr,trial,method)=xcorr(s,rec4db5soft(snr,:,method),0
,'coeff');

cor5db3soft(snr,trial,method)=xcorr(s,rec5db3soft(snr,:,method),0
,'coeff');

cor5db4soft(snr,trial,method)=xcorr(s,rec5db4soft(snr,:,method),0
,'coeff');

48

cor5db5soft(snr,trial,method)=xcorr(s,rec5db5soft(snr,:,method),0
,'coeff');

cor3db3hard(snr,trial,method)=xcorr(s,rec3db3hard(snr,:,method),0
,'coeff');

cor3db4hard(snr,trial,method)=xcorr(s,rec3db4hard(snr,:,method),0
,'coeff');

cor3db5hard(snr,trial,method)=xcorr(s,rec3db5hard(snr,:,method),0
,'coeff');

cor4db3hard(snr,trial,method)=xcorr(s,rec4db3hard(snr,:,method),0
,'coeff');

cor4db4hard(snr,trial,method)=xcorr(s,rec4db4hard(snr,:,method),0
,'coeff');

cor4db5hard(snr,trial,method)=xcorr(s,rec4db5hard(snr,:,method),0
,'coeff');

cor5db3hard(snr,trial,method)=xcorr(s,rec5db3hard(snr,:,method),0
,'coeff');

cor5db4hard(snr,trial,method)=xcorr(s,rec5db4hard(snr,:,method),0
,'coeff');

cor5db5hard(snr,trial,method)=xcorr(s,rec5db5hard(snr,:,method),0
,'coeff');
 end
 end
 end

save(sprintf('mse%s3lvl',sigtypes),'msemed','mse3db3soft','mse3db
3hard','mse3db4soft','mse3db4hard','mse3db5soft','mse3db5hard')

save(sprintf('mse%s4lvl',sigtypes),'msemed','mse4db3soft','mse4db
3hard','mse4db4soft','mse4db4hard','mse4db5soft','mse4db5hard')

save(sprintf('mse%s5lvl',sigtypes),'msemed','mse5db3soft','mse5db
3hard','mse5db4soft','mse5db4hard','mse5db5soft','mse5db5hard')

save(sprintf('cor%s3lvl',sigtypes),'cor3db3soft','cor3db3hard','c
or3db4soft','cor3db4hard','cor3db5soft','cor3db5hard')

save(sprintf('cor%s4lvl',sigtypes),'cor4db3soft','cor4db3hard','c
or4db4soft','cor4db4hard','cor4db5soft','cor4db5hard')

save(sprintf('cor%s5lvl',sigtypes),'cor5db3soft','cor5db3hard','c
or5db4soft','cor5db4hard','cor5db5soft','cor5db5hard')
end

49

C. SUB FUNCTIONS

1. MakeSignal

This code is part of Wavelab version 802 [11].

function sig = MakeSignal(Name,n)
% MakeSignal -- Make artificial signal
% Usage
% sig = MakeSignal(Name,n)
% Inputs
% Name string: 'HeaviSine', 'Bumps', 'Blocks',
% 'Doppler', 'Ramp', 'Cusp', 'Sing', 'HiSine',
% 'LoSine', 'LinChirp', 'TwoChirp', 'QuadChirp',
% 'MishMash', 'WernerSorrows' (Heisenberg),
% 'Leopold' (Kronecker), 'Piece-Regular' (Piece-Wise
Smooth),
% 'Riemann','HypChirps','LinChirps', 'Chirps', 'Gabor'
% 'sineoneoverx','Cusp2','SmoothCusp','Gaussian'
% 'Piece-Polynomial' (Piece-Wise 3rd degree polynomial)
% n desired signal length
% Outputs
% sig 1-d signal
%
% References
% Various articles of D.L. Donoho and I.M. Johnstone
%
 if nargin > 1,
 t = (1:n) ./n;
 end
 if strcmp(Name,'HeaviSine'),
 sig = 4.*sin(4*pi.*t);
 sig = sig - sign(t - .3) - sign(.72 - t);
 elseif strcmp(Name,'Bumps'),
 pos = [.1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81];
 hgt = [4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2];
 wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008
.005];
 sig = zeros(size(t));
 for j =1:length(pos)
 sig = sig + hgt(j)./(1 + abs((t -
pos(j))./wth(j))).^4;
 end
 elseif strcmp(Name,'Blocks'),
 pos = [.1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81];
 hgt = [4 (-5) 3 (-4) 5 (-4.2) 2.1 4.3 (-3.1) 2.1 (-
4.2)];
 sig = zeros(size(t));
 for j=1:length(pos)
 sig = sig + (1 + sign(t-pos(j))).*(hgt(j)/2) ;
 end

50

 elseif strcmp(Name,'Doppler'),
 sig = sqrt(t.*(1-t)).*sin((2*pi*1.05) ./(t+.05));
 elseif strcmp(Name,'Ramp'),
 sig = t - (t >= .37);
 elseif strcmp(Name,'Cusp'),
 sig = sqrt(abs(t - .37));
 elseif strcmp(Name,'Sing'),
 k = floor(n * .37);
 sig = 1 ./abs(t - (k+.5)/n);
 elseif strcmp(Name,'HiSine'),
 sig = sin(pi * (n * .6902) .* t);
 elseif strcmp(Name,'LoSine'),
 sig = sin(pi * (n * .3333) .* t);
 elseif strcmp(Name,'LinChirp'),
 sig = sin(pi .* t .* ((n .* .500) .* t));
 elseif strcmp(Name,'TwoChirp'),
 sig = sin(pi .* t .* (n .* t)) + sin((pi/3) .* t .* (n
.* t));
 elseif strcmp(Name,'QuadChirp'),
 sig = sin((pi/3) .* t .* (n .* t.^2));
 elseif strcmp(Name,'MishMash'), % QuadChirp + LinChirp +
HiSine
 sig = sin((pi/3) .* t .* (n .* t.^2)) ;
 sig = sig + sin(pi * (n * .6902) .* t);
 sig = sig + sin(pi .* t .* (n .* .125 .* t));
 elseif strcmp(Name,'WernerSorrows'),
 sig = sin(pi .* t .* (n/2 .* t.^2)) ;
 sig = sig + sin(pi * (n * .6902) .* t);
 sig = sig + sin(pi .* t .* (n .* t));
 pos = [.1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81];
 hgt = [4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2];
 wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008
.005];
 for j =1:length(pos)
 sig = sig + hgt(j)./(1 + abs((t -
pos(j))./wth(j))).^4;
 end
 elseif strcmp(Name,'Leopold'),
 sig = (t == floor(.37 * n)/n); % Kronecker
 elseif strcmp(Name,'Riemann'),
 sqn = round(sqrt(n));
 sig = t .* 0; % Riemann's Non-differentiable Function
 sig((1:sqn).^2) = 1. ./ (1:sqn);
 sig = real(ifft(sig));
 elseif strcmp(Name,'HypChirps'), % Hyperbolic Chirps of
Mallat's book
 alpha = 15*n*pi/1024;
 beta = 5*n*pi/1024;
 t = (1.001:1:n+.001)./n;
 f1 = zeros(1,n);
 f2 = zeros(1,n);
 f1 = sin(alpha./(.8-t)).*(0.1<t).*(t<0.68);

51

 f2 = sin(beta./(.8-t)).*(0.1<t).*(t<0.75);
 M = round(0.65*n);
 P = floor(M/4);
 enveloppe = ones(1,M); % the rising cutoff function
 enveloppe(1:P) = (1+sin(-pi/2+((1:P)-ones(1,P))./(P-
1)*pi))/2;
 enveloppe(M-P+1:M) = reverse(enveloppe(1:P));
 env = zeros(1,n);
 env(ceil(n/10):M+ceil(n/10)-1) = enveloppe(1:M);
 sig = (f1+f2).*env;
 elseif strcmp(Name,'LinChirps'), % Linear Chirps of
Mallat's book
 b = 100*n*pi/1024;
 a = 250*n*pi/1024;
 t = (1:n)./n;
 A1 = sqrt((t-1/n).*(1-t));
 sig = A1.*(cos((a*(t).^2)) + cos((b*t+a*(t).^2)));
 elseif strcmp(Name,'Chirps'), % Mixture of Chirps of
Mallat's book
 t = (1:n)./n.*10.*pi;
 f1 = cos(t.^2*n/1024);
 a = 30*n/1024;
 t = (1:n)./n.*pi;
 f2 = cos(a.*(t.^3));
 f2 = reverse(f2);
 ix = (-n:n)./n.*20;
 g = exp(-ix.^2*4*n/1024);
 i1 = (n/2+1:n/2+n);
 i2 = (n/8+1:n/8+n);
 j = (1:n)/n;
 f3 = g(i1).*cos(50.*pi.*j*n/1024);
 f4 = g(i2).*cos(350.*pi.*j*n/1024);
 sig = f1+f2+f3+f4;
 enveloppe = ones(1,n); % the rising cutoff function
 enveloppe(1:n/8) = (1+sin(-pi/2+((1:n/8)-
ones(1,n/8))./(n/8-1)*pi))/2;
 enveloppe(7*n/8+1:n) = reverse(enveloppe(1:n/8));
 sig = sig.*enveloppe;
 elseif strcmp(Name,'Gabor'), % two modulated Gabor
functions in
 % Mallat's book
 N = 512;
 t = (-N:N)*5/N;
 j = (1:N)./N;
 g = exp(-t.^2*20);
 i1 = (2*N/4+1:2*N/4+N);
 i2 = (N/4+1:N/4+N);
 sig1 = 3*g(i1).*exp(i*N/16.*pi.*j);
 sig2 = 3*g(i2).*exp(i*N/4.*pi.*j);
 sig = sig1+sig2;
 elseif strcmp(Name,'sineoneoverx'), % sin(1/x) in Mallat's
book

52

 N = 1024;
 i = (-N+1:N);
 i(N) = 1/100;
 i = i./(N-1);
 sig = sin(1.5./(i));
 sig = sig(513:1536);
 elseif strcmp(Name,'Cusp2'),
 N = 64;
 i = (1:N)./N;
 x = (1-sqrt(i)) + i/2 -.5;
 M = 8*N;
 sig = zeros(1,M);
 sig(M-1.5.*N+1:M-.5*N) = x;
 sig(M-2.5*N+2:M-1.5.*N+1) = reverse(x);
 sig(3*N+1:3*N + N) = .5*ones(1,N);
 elseif strcmp(Name,'SmoothCusp'),
 sig = MakeSignal('Cusp2');
 N = 64;
 M = 8*N;
 t = (1:M)/M;
 sigma = 0.01;
 g = exp(-.5.*(abs(t-
.5)./sigma).^2)./sigma./sqrt(2*pi);
 g = fftshift(g);
 sig2 = iconv(g',sig)'/M;
 elseif strcmp(Name,'Piece-Regular'),
 sig1=-15*MakeSignal('Bumps',n);
 t = (1:fix(n/12)) ./fix(n/12);
 sig2=-exp(4*t);
 t = (1:fix(n/7)) ./fix(n/7);
 sig5=exp(4*t)-exp(4);
 t = (1:fix(n/3)) ./fix(n/3);
 sigma=6/40;
 sig6=-70*exp(-((t-1/2).*(t-1/2))/(2*sigma^2));
 sig(1:fix(n/7))= sig6(1:fix(n/7));

 sig((fix(n/7)+1):fix(n/5))=0.5*sig6((fix(n/7)+1):fix(n/5));

 sig((fix(n/5)+1):fix(n/3))=sig6((fix(n/5)+1):fix(n/3));

 sig((fix(n/3)+1):fix(n/2))=sig1((fix(n/3)+1):fix(n/2));
 sig((fix(n/2)+1):(fix(n/2)+fix(n/12)))=sig2;
 sig((fix(n/2)+2*fix(n/12)):-
1:(fix(n/2)+fix(n/12)+1))=sig2;
sig(fix(n/2)+2*fix(n/12)+fix(n/20)+1:(fix(n/2)+2*fix(n/12)+3*fix(
n/20)))=...
-ones(1,fix(n/2)+2*fix(n/12)+3*fix(n/20)-fix(n/2)-2*fix(n/12)-
fix(n/20))*25;
 k=fix(n/2)+2*fix(n/12)+3*fix(n/20);
 sig((k+1):(k+fix(n/7)))=sig5;
 diff=n-5*fix(n/5);
 sig(5*fix(n/5)+1:n)=sig(diff:-1:1);

53

 % zero-mean
 bias=sum(sig)/n;
 sig=bias-sig;
 elseif strcmp(Name,'Piece-Polynomial'),
 t = (1:fix(n/5)) ./fix(n/5);
 sig1=20*(t.^3+t.^2+4);
 sig3=40*(2.*t.^3+t) + 100;
 sig2=10.*t.^3 + 45;
 sig4=16*t.^2+8.*t+16;
 sig5=20*(t+4);
 sig6(1:fix(n/10))=ones(1,fix(n/10));
 sig6=sig6*20;
 sig(1:fix(n/5))=sig1;
 sig(2*fix(n/5):-1:(fix(n/5)+1))=sig2;
 sig((2*fix(n/5)+1):3*fix(n/5))=sig3;
 sig((3*fix(n/5)+1):4*fix(n/5))=sig4;
 sig((4*fix(n/5)+1):5*fix(n/5))=sig5(fix(n/5):-1:1);
 diff=n-5*fix(n/5);
 sig(5*fix(n/5)+1:n)=sig(diff:-1:1);
 %sig((fix(n/20)+1):(fix(n/20)+fix(n/10)))=-
ones(1,fix(n/10))*20;

 sig((fix(n/20)+1):(fix(n/20)+fix(n/10)))=ones(1,fix(n/10))*
10;
 sig((n-fix(n/10)+1):(n+fix(n/20)-
fix(n/10)))=ones(1,fix(n/20))*150;
 % zero-mean
 bias=sum(sig)/n;
 sig=sig-bias;
 elseif strcmp(Name,'Gaussian'),
 sig=GWN(n,beta);
 g=zeros(1,n);
 lim=alpha*n;
 mult=pi/(2*alpha*n);
 g(1:lim)=(cos(mult*(1:lim))).^2;
 g((n/2+1):n)=g((n/2):-1:1);
 g = rnshift(g,n/2);
 g=g/norm(g);
 sig=iconv(g,sig);
 else
 disp(sprintf('MakeSignal: I don*t recognize
<<%s>>',Name))
 disp('Allowable Names are:')
 disp('HeaviSine'),
 disp('Bumps'),
 disp('Blocks'),
 disp('Doppler'),
 disp('Ramp'),
 disp('Cusp'),
 disp('Crease'),
 disp('Sing'),
 disp('HiSine'),

54

 disp('LoSine'),
 disp('LinChirp'),
 disp('TwoChirp'),
 disp('QuadChirp'),
 disp('MishMash'),
 disp('WernerSorrows'),
 disp('Leopold'),
 disp('Sing'),
 disp('HiSine'),
 disp('LoSine'),
 disp('LinChirp'),
 disp('TwoChirp'),
 disp('QuadChirp'),
 disp('MishMash'),
 disp('WernerSorrows'),
 disp('Leopold'),
 disp('Riemann'),
 disp('HypChirps'),
 disp('LinChirps'),
 disp('Chirps'),
 disp('sineoneoverx'),
 disp('Cusp2'),
 disp('SmoothCusp'),
 disp('Gabor'),
 disp('Piece-Regular');
 disp('Piece-Polynomial');
 disp('Gaussian');
 end

%
% Originally made by David L. Donoho.
% Function has been enhanced.

%
% Part of WaveLab Version 802
% Built Sunday, October 3, 1999 8:52:27 AM
% This is Copyrighted Material
% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@stat.stanford.edu
%

55

2. Kurtosistest

%%
% %
% kurtosistest: implements thebootstrap-based hypothesis %
% test H: kurtosis of the input=3 against %
% kurtosis of input~=3 and performs soft and %
% hard thresholding on the data %
% %
% SYNTAX : [soft,hard,kur] = kurtosistest[data,kurlim] %
% %
% INPUT : data: data sequence to be tested %
% kurlim: kurtosis limit not to be exceeded %
% thresholding %
% %
% OUTPUT : soft: soft thresholded data %
% hard: hard thresholded data %
% kur: kurtosis value used in soft thresholding%
% %
% SUB FUNC : none %
% %
% Written by Hasan E. KAN %
% %
%%

function [varargout]=kurtosistest(varargin);

datain=varargin{1};
kurlim=varargin{2};

hardout=zeros(size(datain));

test=boottest(datain,'kurtosis',3,1,.05,99,25);
if test==1
 softout=datain;
 hardout=datain;
 kur=-1;
else
 storage=[];temp=datain;
 kur=mean(bootstrp(99,'kurtosis',datain));
 while kur>kurlim
 if length(storage)>round(length(temp)/3)
 kur=kurlim;
 else
 locations=find(abs(temp)==max(abs(temp)))';
 storage=[storage; locations];
 temp(locations)=0;
 kur=mean(bootstrp(99,'kurtosis',temp));
 end
 end

56

 softout=datain*abs(3-kur)/(kurlim-3);
 if ~isempty(storage)
 softout(storage)=datain(storage);
 hardout(storage)=datain(storage);
 end
end

varargout{1} = softout;
varargout{2} = hardout;
varargout{3} = kur;

57

APPENDIX B. SIMULATION RESULTS

Simulation results for the three test signal types are presented in detail in this

Appendix. Descriptions for these test signals were given in Chapter 4. Results include

performance criteria obtained for the MSE and distance measure defined in Chapter 4 for

SNR levels between –6 to 6 dB, for one hundred trials per SNR level. Finally, the

original, noisy and the recovered versions of one trial are shown for SNR values –6 dB,

0 dB and 6 dB to provide a visual representation of the FFT-based denoising scheme.

A. FFT-BASED DENOISING

1. Sinusoidal Signal

The frequency for the sinusoidal signal was selected randomly for each of the 100

trials so as to generalize the simulation results. The frequency was limited to avoid

aliasing or DC signals. Minimum and maximum allowed frequencies for the sinusoidal

test signal in the simulations were 2/512 Hz and 241/512 Hz respectively, where the

sampling frequency was selected as 1 Hz. Figure 13 shows the performance curves for

FFT-based denoising scheme. These curves indicate that the thresholding schemes

perform similarly on this type of signal. Figures 14 to 16 illustrate noisy and recovered

versions of a sinusoidal signal at SNR values of –6 dB, 0 dB and 6 dB respectively.

58

-6 -4 -2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25
(a) Distance measure for sinusoidal signal

SNR

d

hard
soft

-6 -4 -2 0 2 4 6
10

-2

10
-1

10
0

10
1

(b) MSE for sinusoidal signal

SNR

MSE

hard
soft

Figure 13. FFT-based denoising for sinusoidal signal type.

59

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=-6dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 14. FFT-based denoising for sinusoidal signal type, SNR=–6 dB.

60

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=0dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 15. FFT-based denoising for sinusoidal signal type, SNR=0 dB.

61

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=6dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 16. FFT-based denoising for sinusoidal signal type, SNR=6 dB.

62

2. Constant Amplitude Chirp Signal

Soft and hard thresholding perform similarly according to MSE. However, the

distance measure shows that soft thresholding outperforms hard thresholding, especially

at low and medium SNRs. This result can be seen in Figure 17. Figures 18 to 20 illustrate

noisy and recovered versions of a sinusoidal signal at SNR values of –6 dB, 0 dB and

6 dB respectively.

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4
(a) Distance measure for constant amplitude chirp signal

SNR

d

hard
soft

-6 -4 -2 0 2 4 6

10
-0.9

10
0

(b) MSE for constant amplitude chirp signal

SNR

MSE

hard
soft

Figure 17. FFT-based denoising for constant amplitude chirp type signal.

63

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=-6dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 18. FFT-based denoising for constant amplitude chirp type, SNR=–6 dB.

64

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=0dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 19. FFT-based denoising for constant amplitude chirp type, SNR=0 dB.

65

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=6dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 20. FFT-based denoising for constant amplitude chirp type, SNR=6 dB.

66

3. Chirp with an Amplitude that Increases in an RC Time Constant
Fashion

The results shown in Figure 21 indicate that the thresholding schemes have

similar MSE performances at SNR values lower than –3 dB, whereas soft thresholding

performs better at higher SNRs. According to the distance measure d, soft thresholding is

better at all SNR levels. Figures 22 to 24 illustrate noisy and recovered versions of a

sinusoidal signal at SNR values of –6 dB, 0 dB and 6 dB respectively.

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5
(a) Distance measure for increasing amplitude chirp signal

SNR

d

hard
soft

-6 -4 -2 0 2 4 6
10

-0.8

10
-0.4

10
0

(b) MSE for increasing amplitude chirp signal

SNR

MSE

hard
soft

Figure 21. FFT-based denoising for increasing amplitude chirp type signal.

67

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=-6dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 22. FFT-based denoising for increasing amplitude chirp type, SNR=–6 dB.

68

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=0dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 23. FFT-based denoising for increasing amplitude chirp type, SNR=0 dB.

69

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=6dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 24. FFT-based denoising for increasing amplitude chirp type, SNR=6 dB.

70

B. WT-BASED DENOISING

Many different parameters affect the performance of the WT-based denoising

scheme such as the number of decomposition levels, processing method for the

approximation coefficients and the order of the Daubechies wavelet used. Results show

no significant difference among the Daubechies wavelet orders considered. Only best

results for each signal are illustrated in this section. Results shown include MSE and

distance measure performances for SNR levels between –6 to 6 dB, where one hundred

trials are used for each SNR level. Noisy and recovered versions of one trial are shown

for SNR values –6 dB, 0 dB and 6 dB to provide a visual representation of the WT-based

denoising scheme.

1. Sinusoidal Signal

Soft thresholding outperforms hard thresholding at low and medium SNR levels

as shown in Figure 25. However, it does not perform as good as any of the thresholding

methods used in the FFT-based denoising case for this signal type. Noisy and recovered

versions of a sinusoidal signal at SNR values of –6 dB, 0 dB and 6 dB are shown in

Figures 26 to 28.

71

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

SNR

(a) Distance measure for sinusoidal signal, 4 level decomposition, method 2

d

hard3
soft3
hard4
soft4
hard5
soft5

-6 -4 -2 0 2 4 6
10

-0.8

10
0.1

SNR

(b) MSE for sinusoidal signal, 4 level decomposition, method 2

MSE

hard3
soft3
hard4
soft4
hard5
soft5

Figure 25. WT-based denoising for sinusoidal signal type, 4 level, method 2, with Daubechies

wavelet orders 3, 4 and 5.

72

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=-6dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 26. WT-based denoising for sinusoidal signal type, 4 level, method 2, Daubechies wavelet 4,

SNR=–6 dB.

73

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=0dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 27. WT-based denoising for sinusoidal signal type, 4 level, method 2, Daubechies wavelet 4,

SNR=0 dB.

74

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=6dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 28. WT-based denoising for sinusoidal signal type, 4 level, method 2, Daubechies wavelet 4,

SNR=6 dB.

75

2. Constant Amplitude Chirp

Results in Figure 29 show that soft and hard thresholding performances are

similar for this signal when using WT-based denoising scheme. The WT-based scheme

performs better than the FFT-based scheme on this signal. Figures 30 to 32 illustrate

noisy and recovered versions of a sinusoidal signal at SNR values of –6 dB, 0 dB and

6 dB respectively.

-6 -4 -2 0 2 4 6
0

0.02

0.04

0.06

0.08

0.1

SNR

(a) Distance measure for constant amplitude chirp signal, 4 level decomposition, method 1

d

hard3
soft3
hard4
soft4
hard5
soft5

-6 -4 -2 0 2 4 6
10

-1

10
0

SNR

(b) MSE for constant amplitude chirp signal, 4 level decomposition, method 1

MSE

hard3
soft3
hard4
soft4
hard5
soft5

Figure 29. WT-based denoising for constant amplitude chirp type, 4 level, method 1, with

Daubechies wavelet orders 3, 4 and 5.

76

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=-6dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 30. WT-based denoising for constant amplitude chirp type, 4 level, method 1, Daubechies

wavelet 4, SNR=–6 dB.

77

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=0dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 31. WT-based denoising for constant amplitude chirp type, 4 level, method 1, Daubechies

wavelet 4, SNR=0 dB.

78

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=6dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 32. WT-based denoising for constant amplitude chirp type, 4 level, method 1, Daubechies

wavelet 4, SNR=6 dB.

79

3. Chirp with an Amplitude that Increases in an RC Time Constant
Fashion

Soft and hard thresholding methods perform similarly according to the

performance criteria shown in Figure 33. WT-based denoising scheme outperforms FFT-

based denoising scheme on this signal. Figures 34 to 36 illustrate noisy and recovered

versions of a sinusoidal signal at SNR values of –6 dB, 0 dB and 6 dB respectively.

-6 -4 -2 0 2 4 6
0

0.02

0.04

0.06

0.08

0.1

SNR

(a) Distance measure for increasing amplitude chirp signal, 4 level decomposition, method 1

d

hard3
soft3
hard4
soft4
hard5
soft5

-6 -4 -2 0 2 4 6

10
-1

10
0

SNR

(b) MSE for increasing amplitude chirp signal, 4 level decomposition, method 1

MSE

hard3
soft3
hard4
soft4
hard5
soft5

Figure 33. WT-based denoising for increasing amplitude chirp type, 4 level, method 1, with

Daubechies wavelet orders 3, 4 and 5.

80

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=-6dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 34. WT-based denoising for increasing amplitude chirp type, 4 level, method 1, Daubechies

wavelet 5, SNR=–6 dB.

81

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=0dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 35. WT-based denoising for increasing amplitude chirp type, 4 level, method 1, Daubechies

wavelet 5, SNR=0 dB.

82

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Original signal

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Noisy signal (SNR=6dB)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with soft thresholding

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

Recovered signal with hard thresholding

Figure 36. WT-based denoising for increasing amplitude chirp type, 4 level, method 1, Daubechies

wavelet 5, SNR=6 dB.

83

APPENDIX C. COMPARISON WITH WAVELET SHRINKAGE
ALGORITHM

The proposed denoising schemes are compared with the original Wavelet

shrinkage algorithm in this chapter. Wavelet shrinkage algorithm is a well-known

denoising scheme.

A. WAVELET SHRINKAGE ALGORITHM

The Wavelet shrinkage algorithm was introduced by Donoho and Johnstone [16,

17] to denoise signals embedded in additive white Gaussian noise with unit variance.

This algorithm has three steps:

a. Wavelet transformation.

b. Noisy coefficients suppression by applying a non-linear thresholding

technique.

c. Inverse wavelet transformation.

1. Choosing a Threshold Value

The following four threshold selection schemes are available:

a. Stein’s Unbiased Risk Estimator (SURE) Threshold

The SURE threshold value is derived adaptively for each decomposition

level by minimizing the Stein’s Unbiased Estimate of risk [18] for threshold estimates.

b. Sqtwolog Threshold

This method uses a fixed threshold value defined as:

2log(())T length signal= .

c. Heursure Threshold

This method is a mixture of the preceding two methods. It uses the

Sqtwolog threshold at low SNR levels and the SURE threshold at medium to high SNR

levels.

84

d. Minimax Threshold

This method uses a fixed threshold that gives minimax performance for

the MSE. The minimax principle is used in statistics in order to design estimators, which

realize the minimum of the maximum mean square error obtained for the worst function

in a given set. So, minimax threshold is the value that provides the minimum MSE

among the worst threshold values for the detail and approximation coefficient sets.

2. Thresholding Methods

a. Hard Thresholding

This method sets the coefficients with absolute values below the chosen

threshold to zero.

b. Soft Thresholding

This method first sets the coefficients with absolute values below a chosen

threshold to zero. Then, it shrinks the remaining coefficients using the relationship

sign()[],c c c T= −$ where c is the coefficient to be thresholded, c$ is the thresholded

coefficient, and T is the chosen threshold value.

B. COMPARISONS

Simulations were performed, using the wavelet shrinkage algorithm defined

above, on the same signals that were used for the proposed scheme. However, different

SNR values were obtained by using constant noise power and different values for the

signal power in this experiment, contrary to what was done in the simulations considered

for the proposed scheme in the main body of the thesis. The Heursure method was used

to compute the threshold values for the wavelet shrinkage algorithm. A new simulation

was performed with the proposed scheme under the same SNR conditions as well.

Results shown in Figures 37 to 39 indicate that the proposed WT-based denoising scheme

performs better than the wavelet shrinkage algorithm for the sinusoidal test signal.

However, the wavelet shrinkage algorithm outperforms the proposed scheme for the chirp

type test signals. It should be noted that these results are restricted to the case of noise

with unit variance.

85

1. Sinusoidal Signal

Results shown in Figure 37 indicate that the MSE performances of the two

denoising algorithms are similar, whereas the distance measure d shows that the proposed

denoising scheme outperforms the wavelet shrinkage algorithm at low SNRs.

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1
(a) Distance measure for sinusoidal signal, 3 level decomposition

SNR

d

proposed hard
proposed soft
w. shrinkage hard
w. shrinkage soft

-6 -4 -2 0 2 4 6
10

-0.8

10
0.1

(b) MSE for sinusoidal signal, 3 level decomposition

SNR

MSE

proposed hard
proposed soft
w. shrinkage hard
w. shrinkage soft

Figure 37. Wavelet shrinkage algorithm and proposed WT-based denoising scheme performances

for the sinusoidal signal type, using 3-level decomposition and Daubechies wavelet 5.

86

2. Constant Amplitude Chirp

Both performance criteria show that the wavelet shrinkage algorithm outperforms

the proposed denoising scheme for this signal. This can be seen in Figure 38.

-6 -4 -2 0 2 4 6
0

0.02

0.04

0.06

0.08

0.1
(a) Distance measure for constant amplitude chirp, 4 level decomposition

SNR

d

proposed hard
proposed soft
w. shrinkage hard
w. shrinkage soft

-6 -4 -2 0 2 4 6
10

-2

10
-1

10
0

(a) MSE for constant amplitude chirp, 4 level decomposition

SNR

MSE
proposed hard
proposed soft
w. shrinkage hard
w. shrinkage soft

Figure 38. Wavelet shrinkage algorithm and proposed WT-based denoising scheme performances

for the constant amplitude chirp type, using 4-level decomposition and Daubechies wavelet 4.

87

3. Chirp With an RC Time Constant-Like Amplitude Increase

Both performance criteria show that the wavelet shrinkage algorithm outperforms

the proposed denoising scheme for this signal as shown in Figure 39.

-6 -4 -2 0 2 4 6
0

0.02

0.04

0.06

0.08
(a) Distance measure for increasing amplitude chirp, 4 level decomposition

SNR

d

proposed hard
proposed soft
w. shrinkage hard
w. shrinkage soft

-6 -4 -2 0 2 4 6
10

-2

10
-1

10
0

(b) MSE for increasing amplitude chirp, 4 level decomposition

SNR

MSE
proposed hard
proposed soft
w. shrinkage hard
w. shrinkage soft

Figure 39. Wavelet shrinkage algorithm and proposed WT-based denoising scheme performances

for the increasing amplitude chirp type, using 4-level decomposition and Daubechies wavelet 5.

It should be noted that the new proposed method (based on kurtosis and Bootstrap

method) seem to be inferior to the methods described in this appendix. But the methods

in this appendix need additional information: the variance of the noise is unity, which

may be an unreasonable constraint in some practical applications.

88

THIS PAGE INTENTIONALLY LEFT BLANK

89

LIST OF REFERENCES

1. Oppenheim, A.V. and Willsky, A.S., Signals and Systems, 2nd ed., Prentice Hall,

1997.

2. Proakis, J.G. and Manolakis, D.G., Digital Signal Processing, 3rd ed., Prentice Hall,

1996.

3. Hlawatsch, F. and Boudreaux-Bartels, G.F., “Linear and Quadratic Time-Frequency

Signal Representations,” IEEE Signal Processing Magazine, Vol. 9, No. 2, pp. 21-67,

April 1992.

4. Burrus, C.S., Gopinath, R.A., and Guo, H., Introduction to Wavelets and Wavelet

Transforms, A Primer, Prentice Hall, 1998.

5. Rioul, O. and Vetterli, M., “Wavelets and Signal Processing,” IEEE Signal

Processing Magazine, Vol. 8, No. 4, pp. 14-38, October 1991.

6. Hippenstiel, R.D., Detection Theory, Applications and Digital Signal Processing,

CRC Press, 2002.

7. Johnson, R.A., Probability and Statistics for Engineers, 6th ed., Prentice Hall, 2000.

8. Zoubir, A.M. and Boashash, B., “The Bootstrap and its Application in Signal

Processing,” IEEE Signal Processing Magazine, Vol. 15, No. 1, pp. 56-76, January

1998.

9. Hall, P. and Wilson, S.R., “Two Guidelines for Bootstrap Hypothesis Testing,”

Biometrics, Vol. 47, pp. 757-762, June 1991.

10. Aktas. U., Time Difference of Arrival (TDOA) Estimation Using Wavelet Based

Denoising, Master’s Thesis, Naval Postgraduate School, Monterey, CA, March 1999.

11. Mantis, S.D., Localization of Wireless Communication Emitters Using Time

Difference of Arrival (TDOA) Methods in Noisy Channels, Master’s Thesis, Naval

Postgraduate School, Monterey, CA, June 2001.

12. Ravier, P. and Amblard, P., “Denoising Using Wavelet Packets and the Kurtosis:

Application to Transient Detection,” Proceedings of the 1998 IEEE-SP International

Symposium on Time-Frequency and Time-Scale Analysis, pp. 625-628, 1998.

13. Donoho. D., Duncan M.R. and Huo X., “Wavelab 802,” October 1999, [http://www-

stat.stanford.edu/~wavelab/], last accessed September 2002.

90

14. The MATLAB Software version 6.1, The Mathworks Inc., May 2001.

15. Zoubir, A.M. and Iskander D.R., “Bootstrap Matlab Toolbox Version 2.0,” May

1998, [http://www.atri.curtin.edu.au/csp/downloads/bootstrap_toolbox.html], last

accessed August 2002.

16. Donoho, D. and Johnstone I., “Ideal Spatial Adaptation via Wavelet Shrinkage,”

Biometrika, Vol. 81, pp. 425-455, 1994.

17. Donoho, D., “De-Noising by Soft-Thresholding,” IEEE Transactions on Information

Theory, Vol. 41, No. 3, pp. 613-627, May 1995.

18. Stein, C., “Estimation of the Mean of a Multivariate Normal Distribution,” The

Annals of Statistics, Vol. 9, pp. 1135-1151, 1981.

91

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School

 Monterey, California

4. Prof. Monique P. Fargues
Department of Electrical and Computer Engineering

 Naval Postgraduate School
Monterey, California

5. Prof. Ralph D. Hippenstiel
Chairman
Department of Electrical Engineering
University of Texas at Tyler
Tyler, Texas

6. Prof. Roberto Cristi

Department of Electrical and Computer Engineering
 Naval Postgraduate School

Monterey, California

7. Kara Harp Okulu
Bakanliklar, Ankara, TURKEY

